## College of the Holy Cross, Spring 2016 <br> Math 244 Review Sheet for Midterm 3

The final will be held in the usual classroom on Thursday, May 12, 3:00-5:30 PM. The exam covers all the material in the course. The questions below range from routine practice to challenging. Do not confine your studying only to this sheet; review material from earlier in the course as needed.

## Review Questions

Throughout, the standard basis of $\mathbf{R}^{n}$ is $\left(\boldsymbol{e}_{j}\right)_{j=1}^{n}$, and the standard basis of $P_{n}$ is $\left(t^{k}\right)_{k=0}^{n}$.

1. Write down a $3 \times 4$ matrix $A^{\prime}$ in reduced row-echelon form, and perform five or six elementary row operations to get a "scrambled" matrix $A$. Write down a particular $4 \times 1$ column $\boldsymbol{x}$, and calculate $\boldsymbol{b}=\boldsymbol{A} \boldsymbol{x}$.
Exchange " $A$ " and " $\boldsymbol{b}$ " matrices with a classmate. (Keep copies of $A^{\prime}$ and $\boldsymbol{x}$; these are your friend's "answer key".)
(a) Calculate the rank and nullity of $A$ by putting $A$ in reduced row-echelon form.
(b) Find bases for the null space of $A$ and the column space of $A$.
(c) Find all solutions of the system $A \boldsymbol{x}=\boldsymbol{b}$ for the $A$ and $\boldsymbol{b}$ you were given.
(d) Swap answers with your friend; resolve any discrepencies.
(e) Repeat as many times as desired.
2. Find an ordered basis $\left(\boldsymbol{v}_{j}\right)_{j=1}^{3}$ of $\mathbf{R}^{3}$. (For example, perform elementary row operations on the identity matrix until you have a reasonably scrambled matrix, $P$, and let $\boldsymbol{v}_{j}$ be the $j$ th column of $P$.
Use the row-reduction algorithm from Chapter 1 to calculate the inverse matrix $P^{-1}$. Pick three integers $\left(\lambda^{j}\right)_{j=1}^{3}$ in non-increaing order, not necessarily distinct but not all equal. (For example, 2, 2, -1 is all right, but $2,1,2$ isn't non-decreasing, and $-1,-1$, -1 are all equal.) Let $D=\operatorname{diag}\left[\lambda^{1}, \lambda^{2}, \lambda^{3}\right]$, and calculate the product $A=P D P^{-1}$.
Exchange " $A$ " matrices with a classmate. (Keep copies of $D, P$, and $P^{-1}$; these are your friend's "answer key".)
(a) Calculate the characteristic polynomial and eigenvalues of $A$.
(b) For each eigenvalue of $A$, find a basis of the corresponding eigenspace.
(c) Find the matrix $P$ that diagonalizes $A$ so that the eigenvalues are in non-decreasing order.
(d) Swap answers with your friend; resolve any discrepencies.
(e) Repeat as many times as desired.
3. For each matrix, either diagonalize or prove the matrix is not diagonalizable

$$
\left[\begin{array}{llll}
4 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 \\
0 & 0 & 4 & 0 \\
1 & 0 & 0 & 4
\end{array}\right] \quad\left[\begin{array}{llll}
4 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 \\
0 & 0 & 2 & 0 \\
1 & 0 & 0 & 2
\end{array}\right] \quad\left[\begin{array}{llll}
4 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 1 & 2
\end{array}\right] \quad\left[\begin{array}{llll}
4 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

4. Find orthogonal matrices that diagonalize each of the following:

$$
\left[\begin{array}{ll}
2 & 3 \\
3 & 2
\end{array}\right], \quad\left[\begin{array}{rr}
2 & 2 \\
2 & -2
\end{array}\right], \quad\left[\begin{array}{rr}
2 & 3 \\
3 & -2
\end{array}\right], \quad\left[\begin{array}{lll}
3 & 2 & 2 \\
2 & 6 & 4 \\
2 & 4 & 6
\end{array}\right] .
$$

5. Let $\boldsymbol{x} \in \mathbf{R}^{n}$ be non-zero, and let $A$ be the outer product $\boldsymbol{x} \boldsymbol{x}^{\top}$.
(a) Find the eigenvalues and eigenspaces of $A$, and show $A$ is diagonalizable.
(b) If $c$ is a real scalar, find the eigenvalues and corresponding eigenspaces of $c I_{n}+\boldsymbol{x} \boldsymbol{x}^{\top}$.
6. An $n \times n$ real matrix $A$ is nilpotent if there exists a positive integer $k$ such that $A^{k}=\mathbf{0}^{n \times n}$. Prove that if $A$ is nilpotent, then
(a) 0 is the only eigenvalue of $A$. (b) $A$ is diagonalizable if and only if $A=\mathbf{0}^{n \times n}$.
7. Let $L: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be the "left-shift" operator

$$
L\left(x^{1}, x^{2}, x^{3}, \ldots, x^{n}\right)=\left(x^{2}, x^{3}, \ldots, x^{n}, 0\right)
$$

(a) Describe the kernel and image of $L$, and give bases for each.
(b) Find the standard matrix $A$ of $L$, and describe the null space and column space of $A$. Be sure your answer is consistent with (a).
(c) Show that $L^{n-1} \neq 0$ (the $(n-1)$-fold composition), but $L^{n}=0$. (Consequently, $A$ is nilpotent, see preceding question.) Describe the matrices $A^{k}$ for $1<k<n$.
8. Let $A$ be an $n \times n$ real skew-symmetric matrix. Prove 0 is the only real eigenvalue of $A$.
9. Let $(V,+, \cdot)$ be a finite-dimensional vector space, $T: V \rightarrow V$ a diagonalizable linear operator. Prove that if $W \subseteq V$ is $T$-invariant, i.e., if $T(W) \subseteq W$, and if $T_{W}: W \rightarrow W$ is the induced operator, then $\lambda$ is an eigenvalue of $T_{W}$ if and only if $W \cap E_{\lambda} \neq\{0\}$, and the $\lambda$-eigenspace of $T_{W}$ is $W \cap E_{\lambda}$.
10. If $A$ is an $n \times n$ real matrix and $t$ is real, we define

$$
\exp (t A)=\sum_{k=0}^{\infty} \frac{t^{k} A^{k}}{k!}=I_{n}+t A+\frac{t^{2} A^{2}}{2!}+\frac{t^{3} A^{3}}{3!}+\cdots
$$

If $a, b$, and $c$ denote real numbers, calculate $\exp (t A)$ for the following $A$ :

$$
\operatorname{diag}[a, b, c], \quad\left[\begin{array}{ll}
a & b \\
b & a
\end{array}\right], \quad\left[\begin{array}{rrr}
a & b & 0 \\
b & a & 0 \\
0 & 0 & c
\end{array}\right], \quad\left[\begin{array}{rr}
a & b \\
b & -a
\end{array}\right], \quad\left[\begin{array}{rr}
a & -b \\
b & a
\end{array}\right]
$$

(Hint: If $A=P D P^{-1}$, then $\exp (t A)=P \exp (t D) P^{-1}$, and $\exp (t D)$ is found easily. It may help to use the result of the next question.)
11. Let $A$ and $B$ be commuting real $n \times n$ matrices. Prove:
(a) $(A+B)^{n}=\sum_{k=0}^{n}\binom{n}{k} A^{n-k} B^{k}$.
(b) $\exp [t(A+B)]=\exp (t A) \exp (t B)$. Hint: Multiply the power series on the right, gather terms of the same degree in $t$, and use the binomial theorem of part (a) to simplify the sum of these terms.

