College of the Holy Cross, Spring 2016 Math 244 Review Sheet for Midterm 3

The third midterm will be held in class on Friday, April 22. The test covers the material up through the end of Chapter 4, including Gram-Schmidt, orthogonal projection, determinants, the kernel and image of a linear transformation, the space of linear transformations, the matrix of a linear transformation, change of basis, the null space and column space of a matrix, and the Rank-Nullity Theorem in various forms.

Review Questions

Throughout, the standard basis of \mathbf{R}^n is $(\mathbf{e}_j)_{j=1}^n$, and the standard basis of P_n is $(t^k)_{k=0}^n$. Any unassigned exercises from Chapters 3 and 4 are good practice.

1. Consider the real matrices $A = \begin{bmatrix} 3 & 4 & 0 \\ 4 & -3 & 0 \\ 0 & 0 & 5 \end{bmatrix}, B = \begin{bmatrix} 3 & 0 & 2 & 1 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & 5 & 2 \\ 0 & 0 & 0 & 5 \end{bmatrix}$.

(a) Find all real λ for which $A - \lambda I_3$ is *not* invertible. (These numbers are the so-called "eigenvalues" of A.)

- (b) For each λ in part (a), find a basis of the null space of $A \lambda I_3$.
- (c) Repeat parts (a) and (b) for B.
- 2. Let $J = \operatorname{Rot}_{\pi/2} : \mathbf{R}^2 \to \mathbf{R}^2$ be counterclockwise rotation by a quarter turn.

(a) Find the standard matrix A of J, and verify that $A^2 = -I_2$ (by multiplying matrices). Interpret this result geometrically.

(b) If $\boldsymbol{v}_1 = (1,1)$ and $\boldsymbol{v}_2 = (1,2)$, and if $S' = (\boldsymbol{v}_1, \boldsymbol{v}_2)$, find the matrix B of J with respect to S'. Is it true that $B^2 = -I_2$? Explain. (Suggestion: To find $[J]_{S'}^{S'}$, find the change of basis matrix $[I]_{S'}^S$ and its inverse, and conjugate the standard matrix of J.)

3. Let A be a real $m \times n$ matrix, let $T = \mu_A : \mathbf{R}^n \to \mathbf{R}^m$ be the associated linear transformation, and consider the function $B : \mathbf{R}^n \times \mathbf{R}^n \to \mathbf{R}$ defined by

$$B(\boldsymbol{x}, \boldsymbol{y}) = \langle T(\boldsymbol{x}), T(\boldsymbol{y}) \rangle.$$

- (a) Show that B is symmetric and bilinear, and that $B(\boldsymbol{x}, \boldsymbol{x}) \geq 0$ for all \boldsymbol{x} .
- (b) Show B positive-definite is and only if A is invertible, if and only if T is injective.
- 4. Let A and B be real $n \times n$ matrices, and assume A and B are similar, i.e., there exists an invertible matrix P such that $B = P^{-1}AP$.
 - (a) Show that $\det B = \det A$.

(b) Suppose $(V, +, \cdot)$ is finite-dimensional $T : V \to V$ is a linear transformation. If S and S' are bases of V, show that $A = [T]_S^S$ and $B = [T]_{S'}^{S'}$ have the same determinant. (Consequently, we may define det $T = \det[T]_S^S$ for any convenient basis S of V.)

- 5. Show that the function $\langle A, B \rangle = \operatorname{tr}(A^{\mathsf{T}}B)$ is an inner product on the space $\mathbb{R}^{m \times n}$ of real $m \times n$ matrices. (Hint: The direct approach works if all else fails. If $A = [A_j^i]$ and $B = [B_\ell^k]$, calculate $\langle A, B \rangle$ in terms of the entries. Looking at 2×3 matrices may be helpful to start.)
- 6. Let $\boldsymbol{v} \in \mathbf{R}^n$ and $\boldsymbol{w} \in \mathbf{R}^m$ be non-zero vectors, and define $T: \mathbf{R}^n \to \mathbf{R}^m$ by

$$T(\boldsymbol{x}) = \langle \boldsymbol{x}, \boldsymbol{v} \rangle \boldsymbol{w}$$

- (a) Show T is linear.
- (b) Show that ker T is the subspace orthogonal to \boldsymbol{v} .
- (c) Show that (\boldsymbol{w}) is a basis for im T.

(d) If $\boldsymbol{v} = (1, -1, 2, 4)$ and $\boldsymbol{w} = (3, -1, 5)$, calculate the standard matrix of T, and use row operations to find bases of ker T and im T. Be sure your results are consistent with parts (b) and (c).

7. Define the mapping $T: P_2 \to \mathbf{R}^2$ by $T(p) = \begin{bmatrix} p(-1) \\ p(2) \end{bmatrix}$.

- (a) Show T is linear.
- (b) Find the matrix of T with respect to the standard bases.
- (c) Find bases for ker T and im T, and verify the Rank-Nullity Theorem.
- 8. Consider the linear mappings Sym and Skew : $\mathbf{R}^{2\times 2} \to \mathbf{R}^{2\times 2}$ defined by

$$Sym(A) = \frac{1}{2}(A + A^{\mathsf{T}}), \qquad Skew(A) = \frac{1}{2}(A - A^{\mathsf{T}}).$$

Find the matrices of these transformations with respect to:

- (a) The basis $(e_1^1, e_2^2, e_1^2, e_2^1)$.
- (b) The basis $(\boldsymbol{e}_1^1, \boldsymbol{e}_2^2, \boldsymbol{e}_1^2 + \boldsymbol{e}_2^1, \boldsymbol{e}_1^2 \boldsymbol{e}_2^1).$
- (c) Verify the change of basis formula in Corollary 4.37 (ii) (p. 83).
- 9. Let $V \subseteq \mathcal{C}^{\infty}$ be the plane spanned by the functions $e_1(x) = e^x$ and $e_{-1}(x) = e^{-x}$, and let D denote differentiation.
 - (a) Show that D maps V to V, i.e., that $D(V) \subseteq V$.
 - (b) Find the matrix of D with respect to the basis $S = (e_1, e_2)$.

(c) Let $S' = (\cosh, \sinh)$, with $\cosh(x) = \frac{1}{2}(e^x + e^{-x})$ and $\sinh(x) = \frac{1}{2}(e^x - e^{-x})$ the hyperbolic cosine and hyperbolic sine. Show that S' is a basis of V, and calculate the change of basis matrices $[I_V]_{S'}^{S'}$ and $[I_V]_{S'}^{S'}$.

(d) Calculate $[D]_{S'}^{S'}$ in two ways: Directly (using the definition), and using Corollary 4.37 (page 83).

- 10. Let $(V, +, \cdot)$ denote the space of linear, real-valued functions on \mathbb{R}^n . That is, $\lambda \in V$ if and only if $\lambda : \mathbb{R}^n \to \mathbb{R}$ is linear.
 - (a) Show that if $\lambda \in V$, then λ is uniquely determined by the *n* real numbers $\lambda_i = \lambda(\boldsymbol{e}_i)$.
 - (b) Show that V is isomorphic as a vector space to $(\mathbf{R}^n)^*$, the space of row matrices.