College of the Holy Cross, Spring 2016
 Math 244 Review Sheet for Midterm 2

The second midterm will be held in class on Wednesday, March 23. The test covers the material up through orthonormal sets in Section 3.2.

Review Questions

1. Find a basis for the space of 2×2 real matrices that commute with \boldsymbol{e}_{1}^{2}.
2. Let A be an $n \times n$ real matrix $(n \geq 2), W=\left\{B\right.$ in $\left.\mathbf{R}^{n \times n}: A B=B A\right\}$. Prove W is a subspace of $\left(\mathbf{R}^{n \times n},+, \cdot\right)$ of dimension at least 2 .
3. Let A be an $n \times n$ real matrix. Prove the columns of A form a linearly independent set in \mathbf{R}^{n} if and only if A is invertible.
4. Let A be an $m \times n$ real matrix with $m<n$.
(a) Show that the solution space of $A \boldsymbol{x}=\mathbf{0}$ has dimension $\geq n-m$. Hint: How many leading 1 's can the reduced row-echelon form of A have?
(b) If the rows of A are a linearly independent set in $\left(\mathbf{R}^{n}\right)^{*}$, what can you say about the reduced row-echelon form of A ? Is the converse true?
(c) Under what conditions do the columns of A form a linearly independent subset of \mathbf{R}^{m} ? A spanning set?
5. Let $W=\left\{A\right.$ in $\left.\mathbf{R}^{2 \times 2}: \operatorname{det} A=0\right\}$.
(a) Is W closed under addition?
(b) Is W closed under scalar multiplication?
6. (In this question, superscripts denote exponentiation.) Suppose $a<b<c$ are real numbers.
(a) Prove that the matrix $\left[\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right]$ is invertible.
(b) Prove that the set $\left(1, t, t^{2}\right)$ is linearly independent.
7. A square matrix $A=\left[A_{j}^{i}\right]$ is upper triangular if $A_{j}^{i}=0$ for $i>j$.
(a) Show that the set U_{n} of $n \times n$ real upper-triangular matrices is a subspace of $\left(\mathbf{R}^{n \times n},+, \cdot\right)$. Find a basis for U_{n}; what is $\operatorname{dim} U_{n}$?
(b) Analogously, define the concept of a lower triangular matrix. (See Definition 2.82, p. 47, for answer.) Show L_{n} is a subspace of $\left(\mathbf{R}^{n \times n},+, \cdot\right)$, and $\operatorname{dim} L_{n}=\operatorname{dim} U_{n}$.
(c) Verify the dimension theorem for U_{n} and L_{n}. That is, calculate the dimensions of $U_{n} \cap L_{n}$ and $U_{n}+L_{n}$, and show $\operatorname{dim}\left(U_{n}+L_{n}\right)=\operatorname{dim} U_{n}+\operatorname{dim} L_{n}-\operatorname{dim}\left(U_{n} \cap L_{n}\right)$. (Suggestion: What kind of matrices are in $U_{n} \cap L_{n}$?)
8. In the vector space $\left(\mathbf{R}^{3 \times 3},+, \cdot\right)$ of real 3×3 matrices, consider the subspaces $X=\operatorname{Sym}^{3}$ of symmetric matrices and $Y=\{B: \operatorname{tr} B=0\}$ of trace-free matrices. Verify the dimension theorem. (That is, calculate the dimensions of $X \cap Y, X, Y$, and $X+Y$, and show $\operatorname{dim}(X+Y)=\operatorname{dim} X+\operatorname{dim} Y-\operatorname{dim}(X \cap Y)$.)
9. Generalize the preceding question to square matrices of arbitrary size.
10. Suppose $S=\left(\boldsymbol{v}_{j}\right)_{j=1}^{n}$ and $S^{\prime}=\left(\boldsymbol{v}_{i}^{\prime}\right)_{i=1}^{n}$ are bases of some vector space $(V,+, \cdot)$.
(a) Show there exist scalars A_{j}^{i}, for $i, j=1, \ldots, n$, such that

$$
\boldsymbol{v}_{j}=\sum_{i=1}^{n} A_{j}^{i} \boldsymbol{v}_{i}^{\prime} \quad \text { for all } j=1, \ldots, n
$$

(b) Let $A=\left[A_{j}^{i}\right]$ be the $n \times n$ matrix whose entries are the scalars in part (a). Prove that if $\boldsymbol{x} \in \mathbf{R}^{n}$ is arbitrary, then $A[\boldsymbol{x}]^{S}=[\boldsymbol{x}]^{S^{\prime}}$. That is, multiplication by A converts the coordinate vector of \boldsymbol{x} with respect to S into the coordinate vector of \boldsymbol{x} with respect to S^{\prime}. (This is mostly an exercise in unpacking definitions; see Definition 2.60, p. 42.)
11. Let $\boldsymbol{v}=(1,-2,2)$ and $\boldsymbol{a}=(1,1,1)$.
(a) Write \boldsymbol{v} as the sum of a vector \boldsymbol{v}_{1} parallel to \boldsymbol{a} and a vector \boldsymbol{v}_{2} orthogonal to \boldsymbol{a}.
(b) Show by direct calculation that $\|\boldsymbol{v}\|^{2}=\left\|\boldsymbol{v}_{1}\right\|^{2}+\left\|\boldsymbol{v}_{2}\right\|^{2}$.
12. Show that the set of vectors

$$
\gamma(t)=(\cos t+\sin t, \cos t-\sin t, \cos t+\sin t, \cos t-\sin t), \quad t \text { real },
$$

describes a circle, i.e., a set of points lying in some plane and at a fixed distance from some point. Suggestion: Decompose $\gamma(t)$ into a "trigonometric linear combination" and show the resulting "basis vectors" are orthogonal and have the same length. What are the circle's center and radius?
13. Let \boldsymbol{x} and \boldsymbol{y} be arbitrary vectors in \mathbf{R}^{n}. Prove that

$$
\boldsymbol{x} \cdot \boldsymbol{y}=\frac{1}{4}\left(\|\boldsymbol{x}+\boldsymbol{y}\|^{2}-\|\boldsymbol{x}-\boldsymbol{y}\|^{2}\right) .
$$

Hint: Expand the right-hand side using properties of the dot product.
14. Each part refers to the vector space of continuous, real-valued functions on $[-\pi, \pi]$, equipped with the inner product

$$
\langle f, g\rangle=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) g(x) d x
$$

Let k and ℓ denote positive integers, and define $c_{k}(x)=\cos (k x)$ and $s_{k}=\sin (k x)$.
(a) Show that the following pairs of functions are orthogonal:
c_{k} and $s_{\ell} ; c_{k}$ and c_{ℓ} if $k \neq \ell ; s_{k}$ and s_{ℓ} if $k \neq \ell$.
Suggestion: The addition formulas for \cos and \sin,

$$
\left.\begin{array}{rl}
\cos (a+b) & =\cos a \cos b-\sin a \sin b \\
\sin (a+b) & =\sin a \cos b+\cos a \sin b,
\end{array}\right\} \text { imply }\left\{\begin{aligned}
\cos a \cos b & =\frac{1}{2}[\cos (a-b)+\cos (a+b)] \\
\sin a \sin b & =\frac{1}{2}[\cos (a-b)-\cos (a+b)] \\
\sin a \cos b & =\frac{1}{2}[\sin (a-b)+\sin (a+b)]
\end{aligned}\right.
$$

(b) Calculate $\left\|c_{k}\right\|^{2}=\left\langle c_{k}, c_{k}\right\rangle$ and $\left\|s_{k}\right\|^{2}=\left\langle s_{k}, s_{k}\right\rangle$.
(c) Suppose $f=\sum_{k=0}^{n}\left(a_{k} c_{k}+b_{k} s_{k}\right)$ (compare Example 2.14). Calculate $\langle f, f\rangle$. Suggestion: Work out the cases $n=1$ or 2 if you don't immediately see a pattern.

