College of the Holy Cross, Spring 2016 Math 244 Review Sheet for Midterm 2

The second midterm will be held in class on Wednesday, March 23. The test covers the material up through orthonormal sets in Section 3.2.

Review Questions

- 1. Find a basis for the space of 2×2 real matrices that commute with e_1^2 .
- 2. Let A be an $n \times n$ real matrix $(n \ge 2)$, $W = \{B \text{ in } \mathbb{R}^{n \times n} : AB = BA\}$. Prove W is a subspace of $(\mathbb{R}^{n \times n}, +, \cdot)$ of dimension at least 2.
- 3. Let A be an $n \times n$ real matrix. Prove the columns of A form a linearly independent set in \mathbb{R}^n if and only if A is invertible.
- 4. Let A be an $m \times n$ real matrix with m < n.

(a) Show that the solution space of $A\mathbf{x} = \mathbf{0}$ has dimension $\geq n - m$. Hint: How many leading 1's can the reduced row-echelon form of A have?

(b) If the rows of A are a linearly independent set in $(\mathbf{R}^n)^*$, what can you say about the reduced row-echelon form of A? Is the converse true?

(c) Under what conditions do the columns of A form a linearly independent subset of \mathbf{R}^m ? A spanning set?

- 5. Let $W = \{A \text{ in } \mathbb{R}^{2 \times 2} : \det A = 0\}.$
 - (a) Is W closed under addition?
 - (b) Is W closed under scalar multiplication?
- 6. (In this question, superscripts denote exponentiation.) Suppose a < b < c are real numbers.

(a) Prove that the matrix
$$\begin{bmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{bmatrix}$$
 is invertible.

- (b) Prove that the set $(1, t, t^2)$ is linearly independent.
- 7. A square matrix $A = [A_i^i]$ is upper triangular if $A_i^i = 0$ for i > j.

(a) Show that the set U_n of $n \times n$ real upper-triangular matrices is a subspace of $(\mathbf{R}^{n \times n}, +, \cdot)$. Find a basis for U_n ; what is dim U_n ?

(b) Analogously, define the concept of a *lower triangular* matrix. (See Definition 2.82, p. 47, for answer.) Show L_n is a subspace of $(\mathbf{R}^{n \times n}, +, \cdot)$, and dim $L_n = \dim U_n$.

(c) Verify the dimension theorem for U_n and L_n . That is, calculate the dimensions of $U_n \cap L_n$ and $U_n + L_n$, and show $\dim(U_n + L_n) = \dim U_n + \dim L_n - \dim(U_n \cap L_n)$. (Suggestion: What kind of matrices are in $U_n \cap L_n$?)

8. In the vector space $(\mathbf{R}^{3\times3}, +, \cdot)$ of real 3×3 matrices, consider the subspaces $X = \text{Sym}^3$ of symmetric matrices and $Y = \{B : \text{tr } B = 0\}$ of trace-free matrices. Verify the dimension theorem. (That is, calculate the dimensions of $X \cap Y$, X, Y, and X + Y, and show $\dim(X + Y) = \dim X + \dim Y - \dim(X \cap Y)$.)

- 9. Generalize the preceding question to square matrices of arbitrary size.
- 10. Suppose $S = (\boldsymbol{v}_j)_{j=1}^n$ and $S' = (\boldsymbol{v}'_i)_{i=1}^n$ are bases of some vector space $(V, +, \cdot)$.

(a) Show there exist scalars A_{i}^{i} , for i, j = 1, ..., n, such that

$$\boldsymbol{v}_j = \sum_{i=1}^n A_j^i \boldsymbol{v}_i'$$
 for all $j = 1, \dots, n$.

(b) Let $A = [A_j^i]$ be the $n \times n$ matrix whose entries are the scalars in part (a). Prove that if $\boldsymbol{x} \in \mathbf{R}^n$ is arbitrary, then $A[\boldsymbol{x}]^S = [\boldsymbol{x}]^{S'}$. That is, multiplication by A converts the coordinate vector of \boldsymbol{x} with respect to S into the coordinate vector of \boldsymbol{x} with respect to S'. (This is mostly an exercise in unpacking definitions; see Definition 2.60, p. 42.)

- 11. Let v = (1, -2, 2) and a = (1, 1, 1).
 - (a) Write \boldsymbol{v} as the sum of a vector \boldsymbol{v}_1 parallel to \boldsymbol{a} and a vector \boldsymbol{v}_2 orthogonal to \boldsymbol{a} .
 - (b) Show by direct calculation that $\|\boldsymbol{v}\|^2 = \|\boldsymbol{v}_1\|^2 + \|\boldsymbol{v}_2\|^2$.
- 12. Show that the set of vectors

$$\gamma(t) = (\cos t + \sin t, \cos t - \sin t, \cos t + \sin t, \cos t - \sin t), \qquad t \text{ real},$$

describes a circle, i.e., a set of points lying in some plane and at a fixed distance from some point. Suggestion: Decompose $\gamma(t)$ into a "trigonometric linear combination" and show the resulting "basis vectors" are orthogonal and have the same length. What are the circle's center and radius?

13. Let \boldsymbol{x} and \boldsymbol{y} be arbitrary vectors in \mathbb{R}^n . Prove that

$$oldsymbol{x} \cdot oldsymbol{y} = rac{1}{4} \left(\|oldsymbol{x} + oldsymbol{y}\|^2 - \|oldsymbol{x} - oldsymbol{y}\|^2
ight).$$

Hint: Expand the right-hand side using properties of the dot product.

14. Each part refers to the vector space of continuous, real-valued functions on $[-\pi, \pi]$, equipped with the inner product

$$\langle f,g \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)g(x) \, dx$$

Let k and ℓ denote positive integers, and define $c_k(x) = \cos(kx)$ and $s_k = \sin(kx)$.

(a) Show that the following pairs of functions are orthogonal:

 c_k and s_ℓ ; c_k and c_ℓ if $k \neq \ell$; s_k and s_ℓ if $k \neq \ell$.

Suggestion: The addition formulas for cos and sin,

$$\cos(a+b) = \cos a \cos b - \sin a \sin b, \\ \sin(a+b) = \sin a \cos b + \cos a \sin b, \\ imply \begin{cases} \cos a \cos b = \frac{1}{2} \left[\cos(a-b) + \cos(a+b) \right], \\ \sin a \sin b = \frac{1}{2} \left[\cos(a-b) - \cos(a+b) \right], \\ \sin a \cos b = \frac{1}{2} \left[\sin(a-b) + \sin(a+b) \right]. \end{cases}$$

(b) Calculate $||c_k||^2 = \langle c_k, c_k \rangle$ and $||s_k||^2 = \langle s_k, s_k \rangle$.

(c) Suppose $f = \sum_{k=0}^{n} (a_k c_k + b_k s_k)$ (compare Example 2.14). Calculate $\langle f, f \rangle$. Suggestion: Work out the cases n = 1 or 2 if you don't immediately see a pattern.