College of the Holy Cross, Spring 2016 Math 244 Review Sheet for Midterm 1

The first midterm will be held in class on Friday, February 19. The test covers the material up through Section 2.1.

Review Questions

- 1. Use the row reduction web program to generate a system of equations. Solve by hand on paper, then use the program to solve; be sure you get the same reduced row-echelon matrix each way. Repeat as necessary.
- 2. Repeat the preceding exercise using the matrix inversion we program.
- 3. Suppose

$$A = \begin{bmatrix} -1 & 0 & 7\\ 3 & 2 & -4\\ -5 & -1 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} -1 & 0\\ 0 & \frac{1}{2}\\ 1 & 0 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 2 & 3\\ 0 & -1 & -2 \end{bmatrix}, \quad D = \begin{bmatrix} 1 & \sqrt{2}\\ \sqrt{2} & -1 \end{bmatrix}.$$

Calculate the indicated matrix if possible, or explain why the expression is undefined:

AB, BA, CB + D, A + BC, CD, DC.

- 4. Write out the 3 × 3 matrices given by the indicated formulas: (a) $A_j^i = i + j$; (b) $A_j^i = i - j$; (c) $A_j^i = (-1)^{i+j}$; (d) $A_j^i = 2^{i-j}$; (e) $A_j^i = 2^i \delta_j^i$.
- 5. If $A = [A_i^i]$ is an $n \times n$ matrix, the *trace* of A is the number

tr
$$A = A_1^1 + A_2^2 + \dots + A_n^n = \sum_{k=1}^n A_k^k$$

(a) Calculate the trace of each matrix in the preceding question, and the trace of I_n , the $n \times n$ identity matrix.

(b) Show that if A is $m \times n$ and B is $n \times m$, then tr(BA) = tr(AB). (Note that the respective products do not have the same size.)

- (c) Show that if A and B are $n \times n$ matrices, then $[A, B] \neq I_n$. Suggestion: Use parts (a) and (b).
- (d) Show that if P is invertible $n \times n$ and A is an arbitrary $n \times n$ matrix, then $\operatorname{tr}(P^{-1}AP) = \operatorname{tr} A$. Suggestion: Use part (b).
- (e) True or false: $\operatorname{tr}(AB) = (\operatorname{tr} A)(\operatorname{tr} B)$. $\operatorname{tr}(cA) = c \operatorname{tr} A$. $\operatorname{tr} A^{\mathsf{T}} = \operatorname{tr} A$.
- 6. Let $(e_j)_{j=1}^3$ denote the standard basis of \mathbb{R}^3 . Find the unique 3×3 matrix A satisfying the given conditions:
 - (a) $Ae_1 = e_2$, $Ae_2 = e_3$, and $Ae_3 = e_1$. (b) $Ae_1 = e_1$, $Ae_2 = e_3$, and $Ae_3 = e_2$.
 - (c) $Ae_1 = e_1$, $Ae_2 = e_3$, and $Ae_3 = e_1$. (d) $Ae_1 = e_2$, $Ae_2 = e_3$, and $Ae_3 = 0$.
 - (e) Determine whether each matrix is invertible.

- 7. Find all 2×2 matrices that commute with $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. Suggestion: Let *B* be a general matrix. Calculate *AB* and *BA* and set the corresponding entries equal.
- 8. Describe all 3×3 matrices A satisfying $\frac{1}{2}(A + A^{\mathsf{T}}) = I_3$.
- 9. Describe the set of all $\boldsymbol{b} = (b^1, b^2, b^3)$ in \mathbf{R}^3 for which the following linear system is consistent:

$$\begin{array}{ll} x^1 - & x^2 - x^3 = b^1, \\ 2x^1 + 2x^2 + x^3 = b^2, \\ 4x^1 & -x^3 = b^3. \end{array}$$

10. Let $\boldsymbol{v}_1 = (3, 2)$ and $\boldsymbol{v}_2 = (1, 1)$.

(a) If $\boldsymbol{b} = (b^1, b^2)$ is in \mathbf{R}^2 , show there exist scalars x^1 and x^2 such that $\boldsymbol{b} = x^1 \boldsymbol{v}_1 + x^2 \boldsymbol{v}_2$. Suggestion: Set up the preceding equation as a linear system, and solve.

(b) On a piece of graph paper, carefully sketch the vectors \boldsymbol{v}_1 and \boldsymbol{v}_2 , and the non-Cartesian grid they define. Use the grid and the parallelogram law (compare Figure 2.1, p. 27) to find scalars C_j^i such that $\boldsymbol{e}_j = \sum_i C_j^i \boldsymbol{v}_i$. Confirm that the answer agrees with the formula you found in part (a).

(c) How is the matrix $C = \begin{bmatrix} C_j^i \end{bmatrix}$ related to the matrix $V = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$?

11. Let V be the set of functions of the form $f(x) = ae^x + be^{-x}$ for some real numbers a and b, and let + and \cdot denote ordinary addition and scalar multiplication of functions.

(a) Show that V is closed under addition, i.e., a sum of functions in V is in V.

(b) Show that V is closed under scalar multiplication, i.e., a scalar multiple of a function in V is in V.

(c) Consider the sets $\{e^x, e^{-x}\}$ and $\{\frac{1}{2}(e^x + e^{-x}), \frac{1}{2}(e^x - e^{-x})\}$. Make a sketch of these sets analogous to Example 2.16, p. 28.

12. Throughout, n is a positive integer, all matrices are of size $n \times n$, and all indices are between 1 and n.

(a) Show that $(e_k^{\ell})_j^i = \delta_k^i \delta_j^{\ell}$. Suggestion: Think about what each side means; feel free to make a verbal argument.

(b) Show that $(A\boldsymbol{e}_k^\ell)_j^i = \sum_{\alpha=1}^n A_\alpha^i(\boldsymbol{e}_k^\ell)_j^\alpha$, and simplify the right-hand side.

(c) Similarly calculate the (i, j)-entry of $\boldsymbol{e}_k^{\ell} A$.

(d) Suppose $[A, e_k^{\ell}] = 0$ for some k and ℓ . By taking $j = \ell$ and $i \neq k$, what can you deduce about the entries of A? What if $j = \ell$ and i = k?

(e) Suppose $[A, e_k^{\ell}] = 0$ for all k and ℓ . What can you deduce from the preceding part? Compare your conclusions with Question 1.10, p. 21.