College of the Holy Cross, Spring Semester, 2017
 Math 242 (Professor Hwang)
 Quiz 3 March 20, 2017

1. In each part, assume $f(x)=2 x-5$.
(a) If $x_{0}=3$ and $\varepsilon=0.1$, find the largest $\delta>0$ for which $\left|x-x_{0}\right|<\delta$ implies $\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon$.
(b) If $x_{0}=3$ and $\varepsilon>0$ is arbitrary, find the largest $\delta>0$ for which $\left|x-x_{0}\right|<\delta$ implies $\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon$.
(c) If x_{0} and $\varepsilon>0$ are arbitrary, find the largest $\delta>0$ for which $\left|x-x_{0}\right|<\delta$ implies $\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon$.
2. Assume $f(x)=m x+b$. If x_{0} and $\varepsilon>0$ are arbitrary, find a $\delta>0$ for which $\left|x-x_{0}\right|<\delta$ implies $\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon$.
3. In each part, assume $f(x)=x^{2}$.
(a) If $x_{0}=3$ and $\varepsilon=0.1$, find the largest $\delta>0$ for which $\left|x-x_{0}\right|<\delta$ implies $\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon$.
(b) If $x_{0}=3$ and $0<\varepsilon<1$ is arbitrary, find the largest $\delta>0$ for which $\left|x-x_{0}\right|<\delta$ implies $\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon$.
(c) If $x_{0} \neq 0$ and $0<\varepsilon<x_{0}^{2}$ are arbitrary, find the largest $\delta>0$ for which $\left|x-x_{0}\right|<\delta$ implies $\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon$.
4. In each part, assume $f(x)=\sqrt{x}$ for $x \geq 0$.
(a) If $x_{0}=0$ and $\varepsilon=0.01$, find the largest $\delta>0$ for which $0 \leq x-x_{0}<\delta$ implies $\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon$.
(b) If $x_{0}=0$ and $\varepsilon>0$ are arbitrary, find the largest $\delta>0$ for which $0 \leq x-x_{0}<\delta$ implies $\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon$.
(c) If $x_{0}>0$ and $0<\varepsilon<\left|x_{0}\right|$ are arbitrary, find the largest $\delta>0$ for which $0 \leq x-x_{0}<\delta$ implies $\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon$.

$$
\begin{aligned}
& \cdot_{z}(3-\underline{0 x} \mathcal{})-0 x=\left|0 x-{ }_{z}(3-\underline{0 x} \mathcal{})\right|=\rho(0) \\
& z^{3}=\rho(q) \cdot \text { च }
\end{aligned}
$$

S! ρ әл!̣!!
 'sy.iom

