College of the Holy Cross, Spring Semester, 2017 Math 242 (Professor Hwang) Quiz 3 March 20, 2017

1. In each part, assume f(x) = 2x - 5.

(a) If $x_0 = 3$ and $\varepsilon = 0.1$, find the largest $\delta > 0$ for which $|x - x_0| < \delta$ implies $|f(x) - f(x_0)| < \varepsilon$.

(b) If $x_0 = 3$ and $\varepsilon > 0$ is arbitrary, find the largest $\delta > 0$ for which $|x - x_0| < \delta$ implies $|f(x) - f(x_0)| < \varepsilon$.

(c) If x_0 and $\varepsilon > 0$ are arbitrary, find the largest $\delta > 0$ for which $|x - x_0| < \delta$ implies $|f(x) - f(x_0)| < \varepsilon$.

- 2. Assume f(x) = mx + b. If x_0 and $\varepsilon > 0$ are arbitrary, find a $\delta > 0$ for which $|x x_0| < \delta$ implies $|f(x) f(x_0)| < \varepsilon$.
- 3. In each part, assume f(x) = x².
 (a) If x₀ = 3 and ε = 0.1, find the largest δ > 0 for which |x x₀| < δ implies |f(x) f(x₀)| < ε.

(b) If $x_0 = 3$ and $0 < \varepsilon < 1$ is arbitrary, find the largest $\delta > 0$ for which $|x - x_0| < \delta$ implies $|f(x) - f(x_0)| < \varepsilon$.

(c) If $x_0 \neq 0$ and $0 < \varepsilon < x_0^2$ are arbitrary, find the largest $\delta > 0$ for which $|x - x_0| < \delta$ implies $|f(x) - f(x_0)| < \varepsilon$.

4. In each part, assume $f(x) = \sqrt{x}$ for $x \ge 0$.

(a) If $x_0 = 0$ and $\varepsilon = 0.01$, find the largest $\delta > 0$ for which $0 \le x - x_0 < \delta$ implies $|f(x) - f(x_0)| < \varepsilon$.

(b) If $x_0 = 0$ and $\varepsilon > 0$ are arbitrary, find the largest $\delta > 0$ for which $0 \le x - x_0 < \delta$ implies $|f(x) - f(x_0)| < \varepsilon$.

(c) If $x_0 > 0$ and $0 < \varepsilon < |x_0|$ are arbitrary, find the largest $\delta > 0$ for which $0 \le x - x_0 < \delta$ implies $|f(x) - f(x_0)| < \varepsilon$.

$$\delta = \min(\sqrt{9+\varepsilon} - 3, 3 - \sqrt{9-\varepsilon}) = \sqrt{6-\varepsilon} - 3, 3 - \sqrt{9-\varepsilon} = \delta.$$
(c) Similarly to (b), $\delta = \sqrt{x_0^2 + \varepsilon} - |x_0|$.

$$4. (b) \delta = \varepsilon^2.$$
(c) $\delta = |(\sqrt{x_0} - \varepsilon)^2 - x_0| = x_0 - (\sqrt{x_0} - \varepsilon)^2.$
(c) $\delta = |(\sqrt{x_0} - \varepsilon)^2 - x_0| = x_0 - (\sqrt{x_0} - \varepsilon)^2.$

Answers: 1. (Each part) $\delta = \frac{1}{2}\varepsilon$. 2. If m = 0, every $\delta > 0$ works; if $m \neq 0$, then $\delta = \varepsilon/m$ (or anything smaller) works. 3. (b) We have $|x^2 - 9| < \varepsilon$ if and only if $9 - \varepsilon < x^2 < 9 + \varepsilon$, which holds if $\sqrt{9 - \varepsilon} < x < \sqrt{9 + \varepsilon}$. The largest positive δ is