College of the Holy Cross, Spring Semester, 2017
 Math 242 (Professor Hwang)
 Quiz 2 February 28, 2017

1. Let x and y be real numbers satisfying $2 \leq|x| \leq 3$ and $5 \leq|y| \leq 9$. Find the largest real number a and the smallest real number b such that $a \leq|x+y| \leq b$.
2. Let $x<0$ and y denote real numbers satisfying $x<y$.
(a) Is it always true that $x^{2}<y^{2}$?
(b) Is it ever true that $x^{2}<y^{2}$?
(c) Is it always true that $x^{3}<y^{3}$?
3. Let x and y denote real numbers in $(-1,1)$.
(a) Show that $x+y<1+x y$. Hint: Consider $(1-x)(1-y)$.
(b) Show that $\left|\frac{x+y}{1+x y}\right|<1$.
(In the language of Algebraic Structures, $x \oplus y=\frac{x+y}{1+x y}$ defines a binary operation on $(-1,1)$. This operation turns out to be associative and commutative; it has an indentity element, and every element has an inverse.)
4. Let $\left(a_{k}\right)_{k=1}^{\infty}$ be the sequence defined by $a_{k}=\frac{2 k}{k^{2}+1}$.
(a) Find the first four terms, and the limit a_{∞}.
(b) Find the smallest positive N such that if $k \geq N$, then $\left|a_{k}-a_{\infty}\right|<\frac{1}{50}$.
5. Recall that if $|r|<1$, then $\sum_{k=0}^{\infty} r^{k}=\frac{1}{1-r}$. Evaluate:
(a) $\sum_{k=0}^{\infty} \frac{2 \cdot 5^{k}}{7^{k}}$;
(b) $\sum_{k=0}^{\infty} \frac{-4 \cdot 5^{k}+(-2)^{k}}{7^{k}}$;
(c) $\sum_{k=m}^{\infty} a r^{k}$.
6. Determine whether each series converges: (a) $\sum_{k=1}^{\infty} \frac{1.0001^{k}}{k^{100}}$; (b) $\sum_{k=1}^{\infty} \frac{k^{100}}{1.0001^{k}}$.
7. Let $A=(-5,3) \cup(7,10)$.
(a) Prove that if $x \in A$, there exist y and z in A such that $y<x<z$.
(b) Find the supremum and infimum of A, with justification. (Your justification should include precise definitions of sup and inf.)
