
College of the Holy Cross, Spring Semester, 2017
Math 242 (Professor Hwang)

Quiz 1 February 17, 2017

1. Let A be a set of real numbers.

(a) Give a formal definition of the condition “A is bounded above”.

Solution There exists a real number U such that x ≤ U for all x in A.

(b) State the completeness axiom for the real number system.

Solution If A ⊆ R is non-empty and bounded above, then A has a real
supremum.

(c) Give the formal definition of a supremum (least upper bound) of A.
Phrase your answer in two forms, one the contrapositive of the other.

Solution Let A ⊆ R be a set. A real number β is a supremum of A if:

(i) x ≤ β for all x in A;
(ii) β ≤ U for every upper bound U of A.

Contrapositively, (ii) can be replaced by
(ii′) For every ε > 0, there exists an x in A such that β − ε < x.

2. Suppose A = { 1
n

: n ≥ 1}. Find the supremum and infimum of A with
justification from the definitions.

Solution We have supA = 1 and inf A = 0: If n is a natural number, then
1
n
≤ 1. Particularly, 1 is an upper bound of A, which implies supA ≤ 1.

Since 1 ∈ A, every upper bound U of A satisfies 1 ≤ U ; by (ii), supA = 1.

For every natural number n, 0 < 1
n
. That is, 0 is a lower bound of A, so

0 ≤ inf A. If ε > 0, there exists a natural number n such that 1
n
< ε, so ε is

not a lower bound of A. By (ii′), inf A = 0.

3. Give examples of sequences of nested, non-empty open intervals (In+1 ⊆ In
for all n) such that

(a)
∞⋂

n=1

In is empty. (b)
∞⋂

n=1

In is non-empty.

Solution You should have no trouble proving that

∞⋂
n=1

(0, 1
n
) = ∅,

∞⋂
n=1

(− 1
n
, 1

n
) = {0},

∞⋂
n=1

(−n+1
n
, n+1

n
) = [−1, 1],

etc.

4. Let A and B be non-empty sets of real numbers, and assume a ≤ b for
every a in A and every b in B. Prove that supA ≤ inf B:

(a) Directly (from the definitions).

Solution By hypothesis, each b in B is an upper bound of A, so supA ≤ b
for all b in B by the definition of a supremum. This in turn means supA is



a lower bound of B. The definition of an infimum immediately implies
supA ≤ inf B.

(b) Contrapositively (assuming that if inf B < supA, then there exists an a
in A and a b in B such that b < a).

Solution If inf B < supA, consider the real number γ = 1
2
(inf B+supA).

Since inf B < γ < supA, the contrapositive formulation of a sup or inf
implies there exists a b in B such that b < γ, and there exists an a in A such
that γ < a. Daisy-chaining, b < γ < a.

5. Construct a real sequence whose image is

(a) The set of integers.

(b) The set of rational numbers.
Hint: Plot the points (p, q) with p and q integers and q > 0, then find a path
that starts at (p0, q0) = (0, 1) and visits each point exactly once. If (pk, qk)
is the kth point visited, put ak = pk

qk
.

Solution For example, define ak = 1
2
k if k is even, and −1

2
(k + 1) if k is

odd. It’s straightforward to check that every integer is in the image.

A sequence enumerating the rationals is not easy to write down as a formula,
but the hint should convince you that such a sequence exists.

6. Let (ak) be a real sequence that is bounded above, and define a new real
sequence (αn) by

αn = sup{ak : n ≤ k}.

(a) Prove that (αk) is non-increasing.

Solution For each n, define An = {ak : k ≥ n}. Clearly An+1 ⊆ An for
all n, so αn+1 = supAn+1 ≤ supAn = αn for all n.

(b) Give an example of a non-constant sequence (ak) for which (αn) is con-
stant.

Solution If ak = − 1
k
, then αn = 0 for all n.

(c) Give an example of a sequence (ak) for which (αn) diverges.

Solution If αk = −k, then αn = −n for each n.

7. Who was Paul Erdös? What did he mean when he asked, “How are your
epsilons?”

Solution Paul Erdös was an itinerant Hungarian mathematician who spent
the last decades of his life living from a suitcase, traveling and collaborat-
ing, turning coffee into theorems. He referred to children as “epsilons”, and
would have been inquiring after one’s offspring.


