College of the Holy Cross Math 135 (Calculus I)

Worksheet 4: Sums, Absolute Values, Power Functions

1. A graph y = f(x) is shown. In the same grid, sketch y = f(-x), y = -f(x), y = |f(x)|.

2. Using a single set of axes for each part, sketch the graphs: See graph paper

(a)
$$y = |x|$$
,
 $y = \frac{1}{2}x + |x|$,
 $y = x + |x|$,
 $y = 2x + |x|$.

(c)
$$y = |x - 1|$$
,
 $y = |x + 2|$,
 $y = |x - 1| + |x + 2|$.

(b)
$$y = |x|$$
,
 $y = |x - 1|$, $y = |x| - 1$,
 $y = |x + 2|$, $y = |x| + 2$.

(d)
$$y = |x - 1|$$
,
 $y = -|x + 2|$,
 $y = |x - 1| - |x + 2|$.

3. (a) Complete the table, using your calculator as little as possible:

x	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
$\frac{1}{x}$	10	S	3	2		3	7	4	9	1
x	1.25	1.5	1.75	2.0	2.25	2.5	2.75	3.0	3.5	4.0
$\frac{1}{x}$	4=08	23	47	1 2	49	2/15	411	13	27	4

What effect does doubling x have on $\frac{1}{x}$? Tripling x? Doubling x halves $\frac{1}{x}$; tripling d; vides $\frac{1}{x}$. (b) On a piece of graph paper, carefully plot the data you found in part (a). (Omit

- (b) On a piece of graph paper, carefully plot the data you found in part (a). (Omit portions lying outside the ranges $0 \le x \le 4$ and $0 \le y \le 4$.) Then fill in the graph $y = \frac{1}{x}$, a hyperbola.
- (c) Use the graph from (b) to sketch the graph $y = \frac{1}{x^2}$. If you're not sure how part (b) helps, do the next question, then come back.

- 4. In this question, we'll graph the power functions y = x, $y = x^2$, $y = x^3$, and $y = x^4$ on the same set of axes by "judicious sampling" rather than systematically plotting points. The grid below extends from 0 to 1 both horizontally and vertically.
 - (a) Draw the line y=x. Place dots at the points where $x=0,\frac{1}{4},\frac{1}{2},\frac{3}{4},$ and 1.
- (b) On the vertical line $x = \frac{1}{4}$, find and plot the point whose height is *one-quarter* the height of the line y = x.
- (c) On the vertical line $x = \frac{1}{2}$, find and plot the point whose height is *one-half* the height of the line y = x.
- (d) On the vertical line $x = \frac{3}{4}$, find and plot the point whose height is three-quarters the height of the line y = x.
 - (e) Use these points to sketch the graph $y = x^2$. (Plot additional points if you like.)
- (f) Repeat parts (b)–(e), but work relative to the parabola you just plotted. Use these points to sketch $y=x^3$.
 - (g) Similarly, sketch $y = x^4$.

