College of the Holy Cross Math 135 (Calculus I)

Worksheet 3: Quadratic Polynomials

1. Values for x and $y = x^2$ are given.

\underline{x}	y	x	y	$\parallel x$	y
0.0	0.00	0.7	0.49	1.4	1.96
0.1	0.01	0.8	0.64	1.5	2.25
0.2	0.04	0.9	0.81	1.6	2.56
0.3	0.09	1.0	1.00	1.7	2.89
0.4	0.16	1.1	1.21	1.8	3.24
0.5	0.25	1.2	1.44	1.9	3.61
0.6	0.36	1.3	1.69	2.0	4.00

Carefully plot the resulting 21 points in the grid provided. (The origin is marked at bottom. Assume the darkest squares are one unit on a side.) Connect the dots, obtaining the graph $y = x^2$ for $0 \le x \le 2$. Use symmetry to extend your graph to $-2 \le x \le 0$.

2. Pick a real number a between -2 and 2, and carefully draw the line of slope m = 2a through the point (a, a^2) in the graph above. Repeat for a few different values of a. What do you notice?

the parabola at (a,a2)

Suppose $a \neq 0$, b, and c are real numbers, and that x is a real number satisfying

$$ax^2 + bx + c = 0. (*)$$

Use the given steps to solve for x: (i) Multiply both sides of (*) by 4a; (ii) Add $b^2 - 4ac$ to

- each side; (iii) Factor the left-hand side as a period square.

 You should have found $x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$. Memorize this formula.

 (i) $4a^2x^2 + 4abx + 4ac = 0$ (ii) $4a^2x^2 + 4abx + b^2 = b^2 4ac$ (iv) $2ax + b = \pm \sqrt{b^2 4ac}$ $2ax = -b \pm \sqrt{b^2 4ac}$
- 4. Factor the quadratics, and solve.
 - (a) $x^2 3x = 0$.

- (b) $y^2 10 = 0$.

- (a) $x^2 3x = 0$. (b) $y^2 10 = 0$. (c) $u^2 3u 10 = 0$. (d) $t^2 6t + 9 = 0$. (e) $z^2 + 6z = -5$. (f) $4r^2 8r + 3 = 0$. (c) (u 5)(u + 2) = 0, u = -2, v = -2, (e) (2 + 1)(2 + 5) = 0, v = -1, v

(b) (y-No)(y+No)=0, y=±No (d) (t-3)2=0, t=3 (f) (2r-3)(2r-1)=0

- r=3 or r= 2.
- Solve by factoring if possible, using the quadratic formula otherwise.
 - (a) $x^2 x = 1$.

(d) $s^6 - 4s^3 = 2$.

(b) $x^2 - x = 2$.

(c) $3z^2 - 2z - 5 = 0$.

- Aysues: (a) X = 1 ± 15 (b) x = -1, 2

- (e) $t^2 2\sqrt{2}t + 2 = 0$. (f) $(u^2 4)^2 3(u^2 4) + 2 = 0$. (d) $S = \sqrt[3]{2 \pm \sqrt{2}}$ (e) $t = \sqrt{2}$ (f) $(u^2 4) = 1$ or 2(c) $\xi = -1, \frac{s}{3}$
- **6.** The graph $y=x^2, -1 \le x \le 1$, is shown at left. In the same grid, sketch the graphs

$$y = \frac{1}{2}x^2;$$

$$y = -x^2$$
;

$$y = 2x^2;$$
 $y = \frac{1}{2}x^2;$ $y = -x^2;$ $y = -2x^2;$ $y = -\frac{1}{2}x^2.$

- 7. The graph $y=x^2, -1 \le x \le 1$, is shown at right. In the same grid, sketch the graphs
 - $y = x^2 1;$ $y = x^2 \frac{1}{2};$ $y = 1 x^2;$

$$y = x^2 - \frac{1}{2}$$
;

$$y = 1 - x^2;$$