College of the Holy Cross
 Math 135 (Calculus I)
 Worksheet 9: Logarithms

In the equation $y=10^{x}$, we usually think of y as a function of x. We could, however, view the exponent x as a function of y. We call x the base 10 logarithm or common logarithm of y, and write $x=\log _{10} y$.

1. (a) Find $\log _{10} 100$ and $\log _{10} 1,000,000$. Hint: If $10^{x}=100$, then $x=$?
(b) Find $\log _{10} \sqrt{10}$ and $\log _{10} \sqrt[3]{10} . \quad$ Hint: If $10^{x}=\sqrt{10}$, then $x=$?
(c) Find $\log _{10} \frac{1}{10}, \log _{10} \sqrt{1000}$.
(d) Suppose $\log _{10} y=4.38$. Evaluate $\log _{10}(100 y)$, $\log _{10} \frac{1}{y}$, and $\log _{10} y^{2}$. About how large is y ? Particularly, how many digits does y have?
2. (a) Recall that $y_{1} y_{2}=10^{x_{1}} \times 10^{x_{2}}=10^{x_{1}+x_{2}}$. By taking logarithms, show

$$
\log _{10}\left(y_{1} y_{2}\right)=\log _{10}\left(y_{1}\right)+\log _{10}\left(y_{2}\right) .
$$

(b) Recall that $y^{p}=\left(10^{x}\right)^{p}=10^{p x}$. By taking logarithms, show that

$$
\log _{10} y^{p}=p \log _{10} y
$$

(c) Recall that $2^{10}=1024 \approx 1000$. Explain why $\log _{10} 2$ is a bit larger than 0.3 .
3. Use the log table to find the indicated logarithms.
(a) $\log _{10} 2$ and $\log _{10} 5$. What do you notice about their sum. Can you explain?
(b) $\log _{10} 20$. Hint: $20=2 \times 10 . \quad \log _{10} 200 . \quad \log _{10} 2000 . \quad \log _{10} 2,000,000$.
(c) $\log _{10} \frac{1}{5}$. Hint: $\frac{1}{5}=\frac{2}{10}=2 \times 10^{-1} . \quad \log _{10} \frac{1}{50} . \quad \log _{10} \frac{1}{5,000,000}$.
(d) $\log _{10} 2 . \quad \log _{10} 4 . \quad \log _{10} 8 . \quad \log _{10} 16$. How are these related? Why?
(e) $\log _{10} 2.718$. Hint: Linear interpolation.
4. For each positive real number $b \neq 1$, there is a base b logarithm, satisfying $x=\log _{b} y$ precisely when $y=b^{x}$. The logarithm with base $b=e \approx 2.71828$ is called the natural logarithm: $x=\ln y$ precisely when $y=e^{x}$.
5. (a) Find the power law $f(x)=c x^{r}$ satisfying $f(2)=7$ and $f(5)=28$. Hint: Use the natural logarithm to solve for r, then express c in terms of r.
(b) Find the power law satisfying $f(2)=28$ and $f(5)=7$.
6. Show that $\log _{10} y=\frac{\ln y}{\ln 10}$. Hint: If $x=\log _{10} y$, then $y=10^{x}$. Take \ln of both sides.
7. Suppose $f(x)=5 x^{1.2}$.
(a) Fill in the table entries, and plot the resulting points in the grid:

x	0.1	0.3	0.5	0.7	0.9
$f(x)$					
x	2	4	6	8	10
$f(x)$					

(b) If $y=5 x^{1.2}$, take $\log _{10}$ of both sides. Explain the shape of your graph in (a).

