College of the Holy Cross Math 135 (Calculus I) Worksheet 9: Logarithms

In the equation $y = 10^x$, we usually think of y as a function of x. We could, however, view the exponent x as a function of y. We call x the base 10 logarithm or common logarithm of y, and write $x = \log_{10} y$.

- 1. (a) Find $\log_{10} 100$ and $\log_{10} 1,000,000$. Hint: If $10^x = 100$, then x = ?
 - (b) Find $\log_{10} \sqrt{10}$ and $\log_{10} \sqrt[3]{10}$. Hint: If $10^x = \sqrt{10}$, then x = ?
 - (c) Find $\log_{10} \frac{1}{10}$, $\log_{10} \sqrt{1000}$.

(d) Suppose $\log_{10} y = 4.38$. Evaluate $\log_{10}(100y)$, $\log_{10} \frac{1}{y}$, and $\log_{10} y^2$. About how large is y? Particularly, how many digits does y have?

2. (a) Recall that $y_1y_2 = 10^{x_1} \times 10^{x_2} = 10^{x_1+x_2}$. By taking logarithms, show

$$\log_{10}(y_1y_2) = \log_{10}(y_1) + \log_{10}(y_2)$$

(b) Recall that $y^p = (10^x)^p = 10^{px}$. By taking logarithms, show that

$$\log_{10} y^p = p \log_{10} y.$$

(c) Recall that $2^{10} = 1024 \approx 1000$. Explain why $\log_{10} 2$ is a bit larger than 0.3.

3. Use the log table to find the indicated logarithms.

(a) $\log_{10} 2$ and $\log_{10} 5$. What do you notice about their sum. Can you explain? (b) $\log_{10} 20$. Hint: $20 = 2 \times 10$. $\log_{10} 200$. $\log_{10} 2000$. $\log_{10} 2,000,000$. (c) $\log_{10} \frac{1}{5}$. Hint: $\frac{1}{5} = \frac{2}{10} = 2 \times 10^{-1}$. $\log_{10} \frac{1}{50}$. $\log_{10} \frac{1}{5,000,000}$. (d) $\log_{10} 2$. $\log_{10} 4$. $\log_{10} 8$. $\log_{10} 16$. How are these related? Why? (e) $\log_{10} 2.718$. Hint: Linear interpolation.

4. For each positive real number $b \neq 1$, there is a *base b logarithm*, satisfying $x = \log_b y$ precisely when $y = b^x$. The logarithm with base $b = e \approx 2.71828$ is called the *natural logarithm*: $x = \ln y$ precisely when $y = e^x$.

5. (a) Find the power law $f(x) = cx^r$ satisfying f(2) = 7 and f(5) = 28. Hint: Use the natural logarithm to solve for r, then express c in terms of r.

(b) Find the power law satisfying f(2) = 28 and f(5) = 7.

6. Show that
$$\log_{10} y = \frac{\ln y}{\ln 10}$$
. Hint: If $x = \log_{10} y$, then $y = 10^x$. Take ln of both sides.

7. Suppose $f(x) = 5x^{1.2}$.

(a) Fill in the table entries, and plot the resulting points in the grid:

(b) If $y = 5x^{1.2}$, take \log_{10} of both sides. Explain the shape of your graph in (a).