College of the Holy Cross

Math 135 (Calculus I)

Worksheet 7: Trigonometry, Polar Coordinates

1. Each part refers to the right triangle:

(a) Use similar triangles to show $\cos \theta=\frac{x}{r}=\frac{\text { adjacent }}{\text { hypotenuse }}$ and $\sin \theta=\frac{y}{r}=\frac{\text { opposite }}{\text { hypotenuse }}$.
(b) The tangent and cotangent of θ are defined to be

$$
\tan \theta=\frac{y}{x}=\frac{\text { opposite }}{\text { adjacent }}, \quad \cot \theta=\frac{x}{y}=\frac{\text { adjacent }}{\text { opposite }} .
$$

Show that $m=\tan \theta$ is the slope of the hypotenuse.
(c) The secant and cosecant of θ are defined to be

$$
\sec \theta=\frac{r}{x}=\frac{\text { hypotenuse }}{\text { adjacent }}, \quad \csc \theta=\frac{r}{y}=\frac{\text { hypotenuse }}{\text { opposite }}
$$

Show that $\sec \theta=\frac{1}{\cos \theta}$ and $\csc \theta=\frac{1}{\sin \theta}$.
2. Fill in the missing entries, omitting any undefined values:

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2 \pi}{3}$	$\frac{3 \pi}{4}$	$\frac{5 \pi}{6}$	π
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1
$\sin \theta$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\tan \theta$									
$\cot \theta$									
$\sec \theta$									
$\csc \theta$									

Let $O=(0,0)$ be the origin of the Cartesian plane, and let $X=(x, y)$ be a point other than the origin. Define $r=d(O, X)$ to be the distance from O to X, and define θ to be any angle (in radians) from the positive x-axis to the ray from O through X. The ordered pair (r, θ) is a set of polar coordinates for X.
3. In the diagram, the Cartesian coordinates (x, y) and the polar coordinates (r, θ) of a point X are shown. Use trigonometric functions to find formulas for x and y in terms of r and θ.

(b) Find the Cartesian coordinates of the points with polar coordinates
$(2,0)$,
$\left(2, \frac{\pi}{6}\right)$,
(2, $\frac{\pi}{4}$),
$\left(2, \frac{\pi}{3}\right)$,
$\left(2, \frac{\pi}{2}\right), \quad\left(2, \frac{3 \pi}{4}\right)$,
$(2, \pi)$,
and plot each point on a piece of polar graph paper.
4. (a) Find a set of polar coordinates for the points with Cartesian coordinates

$$
(\sqrt{3}, 1), \quad(2 \sqrt{3},-2), \quad(2 \sqrt{2}, 2 \sqrt{2}), \quad(-\sqrt{3}, 1), \quad(0,-5)
$$

Hint: A sketch will help you find a polar angle for each.
(b) If $X=(x, y)$, find a formula for r in terms of x and y.
(c) The formulas $x=r \cos \theta, y=r \sin \theta$ make sense when $r \leq 0$. Suppose X has polar coordinates (r, θ). Determine which of the following are also polar coordinates for X :

$$
(r, \theta+2 \pi), \quad(r, \theta-2 \pi), \quad(r,-\theta), \quad(-r,-\theta), \quad(-r, \theta+\pi)
$$

