College of the Holy Cross Math 135 (Calculus I) Worksheet 7: Trigonometry, Polar Coordinates

1. Each part refers to the right triangle:

(a) Use similar triangles to show $\cos \theta = \frac{x}{r} = \frac{\text{adjacent}}{\text{hypotenuse}}$ and $\sin \theta = \frac{y}{r} = \frac{\text{opposite}}{\text{hypotenuse}}$.

(b) The *tangent* and *cotangent* of θ are defined to be

 $\tan \theta = \frac{y}{x} = \frac{\text{opposite}}{\text{adjacent}}, \quad \cot \theta = \frac{x}{y} = \frac{\text{adjacent}}{\text{opposite}}.$

Show that $m = \tan \theta$ is the slope of the hypotenuse.

(c) The *secant* and *cosecant* of θ are defined to be

 $\sec \theta = \frac{r}{x} = \frac{\text{hypotenuse}}{\text{adjacent}}, \qquad \csc \theta = \frac{r}{y} = \frac{\text{hypotenuse}}{\text{opposite}}.$ Show that $\sec \theta = \frac{1}{\cos \theta}$ and $\csc \theta = \frac{1}{\sin \theta}.$

2. Fill in the missing entries, omitting any undefined values:

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
$\cos heta$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1
$\sin heta$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
an heta									
$\cot heta$									
$\sec \theta$									
$\csc \theta$									

Let O = (0,0) be the origin of the Cartesian plane, and let X = (x, y) be a point other than the origin. Define r = d(O, X) to be the *distance* from O to X, and define θ to be any angle (in radians) from the positive x-axis to the ray from O through X. The ordered pair (r, θ) is a set of *polar coordinates* for X.

3. In the diagram, the Cartesian coordinates (x, y) and the polar coordinates (r, θ) of a point X are shown. Use trigonometric functions to find formulas for x and y in terms of r and θ .

(b) Find the Cartesian coordinates of the points with polar coordinates

(2,0), $(2,\frac{\pi}{6}),$ $(2,\frac{\pi}{4}),$ $(2,\frac{\pi}{3}),$ $(2,\frac{\pi}{2}),$ $(2,\frac{3\pi}{4}),$ $(2,\pi),$

and plot each point on a piece of polar graph paper.

4. (a) Find a set of polar coordinates for the points with Cartesian coordinates

$$(\sqrt{3},1),$$
 $(2\sqrt{3},-2),$ $(2\sqrt{2},2\sqrt{2}),$ $(-\sqrt{3},1),$ $(0,-5).$

Hint: A sketch will help you find a polar angle for each.

(b) If X = (x, y), find a formula for r in terms of x and y.

(c) The formulas $x = r \cos \theta$, $y = r \sin \theta$ make sense when $r \leq 0$. Suppose X has polar coordinates (r, θ) . Determine which of the following are also polar coordinates for X:

$$(r, \theta + 2\pi),$$
 $(r, \theta - 2\pi),$ $(r, -\theta),$ $(-r, -\theta),$ $(-r, \theta + \pi)$