College of the Holy Cross
 Math 135 (Calculus I)
 Worksheet 5: Rational Functions

1. On a single set of axes, sketch the graphs $y=\frac{1}{1+x^{2}}, y=\frac{x}{1+x^{2}}, y=\frac{x^{2}}{1+x^{2}}$.
2. On a single set of axes, sketch the graphs $y=\frac{1}{1-x^{2}}, y=\frac{x}{1-x^{2}}, y=\frac{x^{2}}{1-x^{2}}$.
3. The table below gives values of $u(t)=\frac{2 t}{t^{2}+1}$ and $v(t)=\frac{t^{2}-1}{t^{2}+1}$ for $0 \leq t \leq 3$.

t	0.00	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90
$u(t)$	0.00	0.20	0.38	0.55	0.69	0.80	0.88	0.94	0.98	0.99
$v(t)$	-1.00	-0.98	-0.92	-0.83	-0.72	-0.60	-0.47	-0.34	-0.22	-0.10
t	1.00	1.10	1.20	1.30	1.40	1.50	1.60	1.70	1.80	1.90
$u(t)$	1.00	1.00	0.98	0.97	0.95	0.92	0.90	0.87	0.85	0.82
$v(t)$	0.00	0.10	0.18	0.26	0.32	0.38	0.44	0.49	0.53	0.57
t	2.00	2.10	2.20	2.30	2.40	2.50	2.60	2.70	2.80	2.90
$u(t)$	0.80	0.78	0.75	0.73	0.71	0.69	0.67	0.65	0.63	0.62
$v(t)$	0.60	0.63	0.66	0.68	0.70	0.72	0.74	0.76	0.77	0.79

(a) Carefully sketch the graphs $y=u(t)$ and $y=v(t)$ in the (t, y)-plane for $0 \leq t \leq 3$. Show that $u(-t)=-u(t)$, and sketch the left half of the graph $y=u(t)$.

Similarly, show $v(-t)=v(t)$ for all t, and sketch the left half of the graph $y=v(t)$.
(b) Carefully plot the points $(u(t), v(t))$ in the (u, v)-plane.

Use algebra to show that $u(1 / t)=u(t)$ for all $t \neq 0$, and that $v(1 / t)=-v(t)$ for $t \neq 0$. Hint: Multiply $u(1 / t)$ by t^{2} / t^{2}. Proceed similarly for $v(1 / t)$.
(c) Plot the points $(0,1),(u(1 / 2), v(1 / 2))$, and $(1 / 2,0)$. Do you notice anything? What about the points $(0,1),(u(2), v(2))$, and $(2,0)$?
4. In each part, let

$$
f(x)=\frac{10 x^{2}-30 x+7}{x^{3}+1}, \quad g(x)=\frac{10 x^{3}-30 x+7}{x^{3}+1}, \quad h(x)=\frac{0.1 x^{4}-30 x+7}{x^{3}+1} .
$$

(a) Does each function have any vertical asymptotes? Horizontal asymptotes?
(b) For which positive real x do we have $f(x)=g(x) ? f(x)=h(x) ? g(x)=h(x)$?
(c) Put the three functions in order (smallest to largest) if $0<x<1 ; 1<x<10$; $10<x<100 ; 100<x$.
5. In each part, let $f(x)=5 x^{2}+3 x-100, g(x)=4.999 x^{2}$, and $h(x)=5.001 x^{2}$.
(a) Show that $g(x) \leq 5 x^{2} \leq h(x)$ for all real x.
(b) Is it true that $g(x) \leq f(x) \leq h(x)$ for all real x ? Explain.
(c) Show that $g(x) \leq f(x) \leq h(x)$ for sufficiently large $|x|$.

