
College of the Holy Cross Math 135 (Calculus I) Worksheet 4: Sums, Absolute Values, Power Functions

1. A graph y = f(x) is shown. In the same grid, sketch y = f(-x), y = -f(x), y = |f(x)|.

- 2. Using a single set of axes for each part, sketch the graphs:
- **3.** (a) Complete the table, using your calculator as little as possible:

x	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
$\frac{1}{x}$										
x	1.25	1.5	1.75	2.0	2.25	2.5	2.75	3.0	3.5	4.0
1										

What effect does doubling x have on $\frac{1}{x}$? Tripling x?

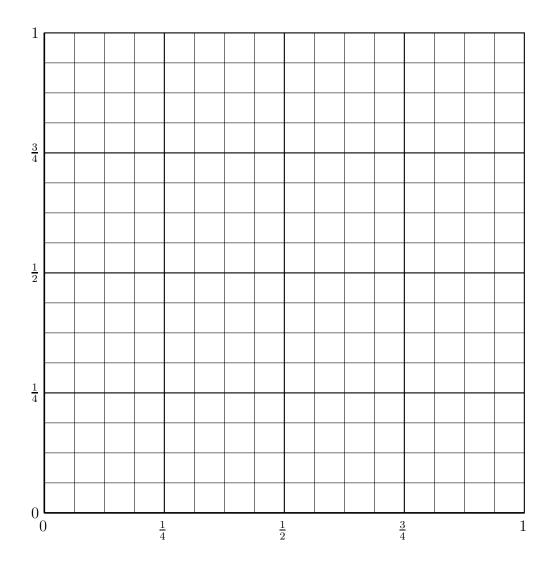
(b) On a piece of graph paper, carefully plot the data you found in part (a). (Omit portions lying outside the ranges $0 \le x \le 4$ and $0 \le y \le 4$.) Then fill in the graph $y = \frac{1}{x}$, a hyperbola.

(c) Use the graph from (b) to sketch the graph $y = \frac{1}{x^2}$. If you're not sure how part (b) helps, do the next question, then come back.

4. In this question, we'll graph the *power functions* y = x, $y = x^2$, $y = x^3$, and $y = x^4$ on the same set of axes by "judicious sampling" rather than systematically plotting points. The grid below extends from 0 to 1 both horizontally and vertically.

(a) Draw the line y = x. Place dots at the points where $x = 0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}$, and 1.

(b) On the vertical line $x = \frac{1}{4}$, find and plot the point whose height is *one-quarter* the height of the line y = x.


(c) On the vertical line $x = \frac{1}{2}$, find and plot the point whose height is *one-half* the height of the line y = x.

(d) On the vertical line $x = \frac{3}{4}$, find and plot the point whose height is *three-quarters* the height of the line y = x.

(e) Use these points to sketch the graph $y = x^2$. (Plot additional points if you like.)

(f) Repeat parts (b)–(e), but work relative to the parabola you just plotted. Use these points to sketch $y = x^3$.

(g) Similarly, sketch $y = x^4$.

