College of the Holy Cross
 Math 135 (Calculus I)
 Worksheet 4: Sums, Absolute Values, Power Functions

1. A graph $y=f(x)$ is shown. In the same grid, sketch $y=f(-x), y=-f(x), y=|f(x)|$.

2. Using a single set of axes for each part, sketch the graphs:
(a) $y=|x|$,
$y=\frac{1}{2} x+|x|$,
(c) $y=|x-1|$,
$y=|x+2|$,
$y=x+|x|$, $y=|x-1|+|x+2|$.
$y=2 x+|x|$.
(d) $y=|x-1|$,
$y=-|x+2|$,
$y=|x-1|-|x+2|$.
$y=|x-1|, \quad y=|x|-1$,
3. (a) Complete the table, using your calculator as little as possible:

x	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
$\frac{1}{x}$										
x	1.25	1.5	1.75	2.0	2.25	2.5	2.75	3.0	3.5	4.0
$\frac{1}{x}$										

What effect does doubling x have on $\frac{1}{x}$? Tripling x ?
(b) On a piece of graph paper, carefully plot the data you found in part (a). (Omit portions lying outside the ranges $0 \leq x \leq 4$ and $0 \leq y \leq 4$.) Then fill in the graph $y=\frac{1}{x}$, a hyperbola.
(c) Use the graph from (b) to sketch the graph $y=\frac{1}{x^{2}}$. If you're not sure how part (b) helps, do the next question, then come back.
4. In this question, we'll graph the power functions $y=x, y=x^{2}, y=x^{3}$, and $y=x^{4}$ on the same set of axes by "judicious sampling" rather than systematically plotting points. The grid below extends from 0 to 1 both horizontally and vertically.
(a) Draw the line $y=x$. Place dots at the points where $x=0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}$, and 1 .
(b) On the vertical line $x=\frac{1}{4}$, find and plot the point whose height is one-quarter the height of the line $y=x$.
(c) On the vertical line $x=\frac{1}{2}$, find and plot the point whose height is one-half the height of the line $y=x$.
(d) On the vertical line $x=\frac{3}{4}$, find and plot the point whose height is three-quarters the height of the line $y=x$.
(e) Use these points to sketch the graph $y=x^{2}$. (Plot additional points if you like.)
(f) Repeat parts (b)-(e), but work relative to the parabola you just plotted. Use these points to sketch $y=x^{3}$.
(g) Similarly, sketch $y=x^{4}$.

