College of the Holy Cross
 Math 135 (Calculus I)
 Worksheet 3: Quadratic Polynomials

1. Values for x and $y=x^{2}$ are given.

x	y	x	y	x	y
0.0	0.00	0.7	0.49	1.4	1.96
0.1	0.01	0.8	0.64	1.5	2.25
0.2	0.04	0.9	0.81	1.6	2.56
0.3	0.09	1.0	1.00	1.7	2.89
0.4	0.16	1.1	1.21	1.8	3.24
0.5	0.25	1.2	1.44	1.9	3.61
0.6	0.36	1.3	1.69	2.0	4.00

Carefully plot the resulting 21 points in the grid provided. (The origin is marked at bottom. Assume the darkest squares are one unit on a side.) Connect the dots, obtaining the graph $y=x^{2}$ for $0 \leq x \leq 2$. Use symmetry to extend your graph to $-2 \leq x \leq 0$.

2. Pick a real number a between -2 and 2 , and carefully draw the line of slope $m=2 a$ through the point $\left(a, a^{2}\right)$ in the graph above. Repeat for a few different values of a. What do you notice?
3. Suppose $a \neq 0, b$, and c are real numbers, and that x is a real number satisfying

$$
\begin{equation*}
a x^{2}+b x+c=0 . \tag{}
\end{equation*}
$$

Use the given steps to solve for x : (i) Multiply both sides of $\left(^{*}\right.$) by $4 a$; (ii) Add $b^{2}-4 a c$ to each side; (iii) Factor the left-hand side as a perfect square; (iv) Solve for x.

You should have found $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$. Memorize this formula.
4. Factor the quadratics, and solve.
(a) $x^{2}-3 x=0$.
(c) $u^{2}-3 u-10=0$.
(e) $z^{2}+6 z=-5$.
(b) $y^{2}-10=0$.
(d) $t^{2}-6 t+9=0$.
(f) $4 r^{2}-8 r+3=0$.
5. Solve by factoring if possible, using the quadratic formula otherwise.
(a) $x^{2}-x=1$.
(d) $s^{6}-4 s^{3}=2$.
(b) $x^{2}-x=2$.
(e) $t^{2}-2 \sqrt{2} t+2=0$.
(c) $3 z^{2}-2 z-5=0$.
(f) $\left(u^{2}-4\right)^{2}-3\left(u^{2}-4\right)+2=0$.
6. The graph $y=x^{2},-1 \leq x \leq 1$, is shown at left. In the same grid, sketch the graphs

$$
y=2 x^{2} ; \quad y=\frac{1}{2} x^{2} ; \quad y=-x^{2} ; \quad y=-2 x^{2} ; \quad y=-\frac{1}{2} x^{2}
$$

7. The graph $y=x^{2},-1 \leq x \leq 1$, is shown at right. In the same grid, sketch the graphs

$$
y=x^{2}-1 ; \quad y=x^{2}-\frac{1}{2} ; \quad y=1-x^{2} ;
$$

