College of the Holy Cross Math 135 (Calculus I) Worksheet 3: Quadratic Polynomials

1. Values for x and $y = x^2$ are given.

x	y	x	y	x	y
0.0	0.00	0.7	0.49	1.4	1.96
0.1	0.01	0.8	0.64	1.5	2.25
0.2	0.04	0.9	0.81	1.6	2.56
0.3	0.09	1.0	1.00	1.7	2.89
0.4	0.16	1.1	1.21	1.8	3.24
0.5	0.25	1.2	1.44	1.9	3.61
0.6	0.36	1.3	1.69	2.0	4.00

Carefully plot the resulting 21 points in the grid provided. (The origin is marked at bottom. Assume the darkest squares are one unit on a side.) Connect the dots, obtaining the graph $y = x^2$ for $0 \le x \le 2$. Use symmetry to extend your graph to $-2 \le x \le 0$.

2. Pick a real number *a* between -2 and 2, and carefully draw the line of slope m = 2a through the point (a, a^2) in the graph above. Repeat for a few different values of *a*. What do you notice?

3. Suppose $a \neq 0$, b, and c are real numbers, and that x is a real number satisfying

$$ax^2 + bx + c = 0. (*)$$

Use the given steps to solve for x: (i) Multiply both sides of (*) by 4a; (ii) Add $b^2 - 4ac$ to each side; (iii) Factor the left-hand side as a perfect square; (iv) Solve for x.

You should have found $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$. Memorize this formula.

- 4. Factor the quadratics, and solve.
 - (a) $x^2 3x = 0.$ (b) $y^2 - 10 = 0.$ (c) $u^2 - 3u - 10 = 0.$ (c) $u^2 - 3u - 10 = 0.$ (c) $u^2 - 3u - 10 = 0.$ (c) $u^2 - 6t + 9 = 0.$ (c) $u^2 - 8r + 3 = 0.$
- 5. Solve by factoring if possible, using the quadratic formula otherwise.
 - (a) $x^2 x = 1$. (b) $x^2 - x = 2$. (c) $3z^2 - 2z - 5 = 0$. (d) $s^6 - 4s^3 = 2$. (e) $t^2 - 2\sqrt{2}t + 2 = 0$. (f) $(u^2 - 4)^2 - 3(u^2 - 4) + 2 = 0$.
- 6. The graph $y = x^2$, $-1 \le x \le 1$, is shown at left. In the same grid, sketch the graphs

7. The graph $y = x^2$, $-1 \le x \le 1$, is shown at right. In the same grid, sketch the graphs $y = x^2 - 1;$ $y = x^2 - \frac{1}{2};$ $y = 1 - x^2;$