College of the Holy Cross Math 135 (Calculus I) Supplement 8: Counting Solutions of Equations

If f is continuous on the interval [a, b] and increasing, then for every y with $f(a) \le y \le f(b)$, there is *exactly one* x with $a \le x \le b$ and y = f(x).

Similarly, if f is continuous on the interval [a, b] and decreasing, then for every y with $f(b) \le y \le f(a)$, there is *exactly one* x with $a \le x \le b$ and y = f(x).

Example 1. Suppose
$$f(x) = \frac{2x}{x^2 + 1}$$
, so that $f'(x) = \frac{2(1 - x^2)}{(x^2 + 1)^2}$

If |y| > 1, the equation y = f(x) has no real solutions.

If y = -1, 0, or 1, the equation y = f(x) has exactly one solution.

If 0 < |y| < 1, the equation y = f(x) has precisely two real solutions.

To see why, note that f has critical points at x = 1 and x = -1; f is increasing on [-1, 1] and decreasing on $(-\infty, -1]$ and $[1, \infty)$, and finally that $f(x) \to 0$ as $x \to \pm \infty$.

We deduce that if $x \leq -1$, then $-1 = f(-1) \leq f(x) < 0$, and each value in this range is hit exactly once; if $-1 \leq x \leq 1$, then $-1 = f(-1) \leq f(x) \leq f(1) = 1$, and every value in this range is hit exactly once; if $1 \leq x$, then $0 < f(x) \leq f(1) = 1$, and every value in this range is hit exactly once.

Example 2. Suppose $f(x) = x^3 - 3x$, so that $f'(x) = 3(x^2 - 1)$.

If |y| > 2, the equation y = f(x) has exactly one real solution.

If y = -2 or y = 2, the equation y = f(x) has exactly two real solutions.

If -2 < y < 2, the equation y = f(x) has precisely three real solutions.

To see why, note that f has critical points at x = 1 (where y = f(1) = -2) and x = -1 (where y = f(-1) = 2), f is increasing on $(-\infty, -1]$ and $[1, \infty)$ and decreasing on [-1, 1], and $f(x) \to -\infty$ as $x \to -\infty$, $f(x) \to \infty$ as $x \to \infty$.

We deduce that if $x \leq -1$, then $-\infty < f(x) \leq f(-1) = 2$ and every value in this range is hit exactly once; if $-1 \leq x \leq 1$, then $-2 = f(1) \leq f(x) \leq f(-1) = 2$ and every value in this range is hit exactly once; if $1 \leq x$, then $f(1) = -2 \leq f(x) < \infty$, and every value in this range is hit exactly once.