College of the Holy Cross

Math 135 (Calculus I)

Supplement 8: Counting Solutions of Equations

If f is continuous on the interval $[a, b]$ and increasing, then for every y with $f(a) \leq y \leq$ $f(b)$, there is exactly one x with $a \leq x \leq b$ and $y=f(x)$.

Similarly, if f is continuous on the interval $[a, b]$ and decreasing, then for every y with $f(b) \leq y \leq f(a)$, there is exactly one x with $a \leq x \leq b$ and $y=f(x)$.

Example 1. Suppose $f(x)=\frac{2 x}{x^{2}+1}$, so that $f^{\prime}(x)=\frac{2\left(1-x^{2}\right)}{\left(x^{2}+1\right)^{2}}$.
If $|y|>1$, the equation $y=f(x)$ has no real solutions.
If $y=-1,0$, or 1 , the equation $y=f(x)$ has exactly one solution.
If $0<|y|<1$, the equation $y=f(x)$ has precisely two real solutions.
To see why, note that f has critical points at $x=1$ and $x=-1 ; f$ is increasing on $[-1,1]$ and decreasing on $(-\infty,-1]$ and $[1, \infty)$, and finally that $f(x) \rightarrow 0$ as $x \rightarrow \pm \infty$.

We deduce that if $x \leq-1$, then $-1=f(-1) \leq f(x)<0$, and each value in this range is hit exactly once; if $-1 \leq x \leq 1$, then $-1=f(-1) \leq f(x) \leq f(1)=1$, and every value in this range is hit exactly once; if $1 \leq x$, then $0<f(x) \leq f(1)=1$, and every value in this range is hit exactly once.

Example 2. Suppose $f(x)=x^{3}-3 x$, so that $f^{\prime}(x)=3\left(x^{2}-1\right)$.
If $|y|>2$, the equation $y=f(x)$ has exactly one real solution.
If $y=-2$ or $y=2$, the equation $y=f(x)$ has exactly two real solutions.
If $-2<y<2$, the equation $y=f(x)$ has precisely three real solutions.
To see why, note that f has critical points at $x=1$ (where $y=f(1)=-2$) and $x=-1$ (where $y=f(-1)=2$), f is increasing on $(-\infty,-1]$ and $[1, \infty)$ and decreasing on $[-1,1]$, and $f(x) \rightarrow-\infty$ as $x \rightarrow-\infty, f(x) \rightarrow \infty$ as $x \rightarrow \infty$.

We deduce that if $x \leq-1$, then $-\infty<f(x) \leq f(-1)=2$ and every value in this range is hit exactly once; if $-1 \leq x \leq 1$, then $-2=f(1) \leq f(x) \leq f(-1)=2$ and every value in this range is hit exactly once; if $1 \leq x$, then $f(1)=-2 \leq f(x)<\infty$, and every value in this range is hit exactly once.

