College of the Holy Cross
Math 135 (Calculus I)
Supplement 7: Derivatives and the Shape of a Graph

The first and second derivatives of a function tell us useful information about the shape
of the graph. To be precise, but to avoid restating technical conditions, we’ll assume in these
notes that f is continuous in some interval [a,b] and f” exists in the open interval (a,b).
(We also say f is “twice differentiable”.)

Definition 1. We say f is increasing in [a, b] if whenever a < s < t < b, we have f(s) < f(t).
We say f is non-decreasing in [a,b] if whenever a < s <t < b, we have f(s) < f(t).

Remark 2. An increasing function can be applied to an inequality to obtain a new inequality
pointing in the same direction. For instance, the squaring function f(x) = x? is increasing
on [0, 00), s0 if 2 < /5 < /5, then 4 < 5 < 5.

Example 3. In the interval (—oo, 00): The function f(x) = 2% is increasing.

The signum function sgn(z) = x/|z| for = # 0, and sgn(0) = 0, is non-decreasing but not
increasing.

The floor and ceiling functions are non-decreasing but not increasing.

A composition of increasing functions is increasing. (Why?) A composition of non-
decreasing functions is non-decreasing. For instance, f(z) = |2?] is non-decreasing.

Activity 1. Give the definitions of decreasing and non-increasing. Give an example of a
function that is decreasing, and of a function that is non-increasing but not decreasing.

Definition 4. We say f is convex (or concave up) if whenever a < s < u < t < b, the point
(u, f(u)) lies below the secant line through (s, f(s)) and (¢, f(t)). Algebraically,
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Activity 2. Give the definition of concave (down), both geometrically and as an algebraic
condition, and illustrate with a sketch.

The main qualitative connection between first and second derivatives and the shape of a
graph is summarized as follows:

Theorem 5. If f' > 0 on (a,b), then f is increasing in [a,b].
If f <0 on (a,b), then f is decreasing in |a,b|.
If f >0 on (a,b), then f is convex in [a,b].
If f" <0 on (a,b), then f is concave in |a,b).

The key technical property behind these results is the Mean Value Theorem, or MV'T.

Theorem 6 (Mean Value Theorem). If f is continuous on [a,b], and is differentiable in
(a,b), then there is an least one ¢ with a < ¢ < b and
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Remark 7. In words, if f is differentiable on an interval [a, b], then at some point in the
open interval (a,b), the instantaneous rate of change of f must equal the average rate of
change of f over |[a, b].

Physically, if you drive 60 miles in some one-hour period, your speed has to be 60 mph
at least once. (Mathematically, your speed could also be a constant 60 mph. Reality usually
lies somewhere in between.)

Remark 8. A key feature of the MVT is, if f satisfies the hypotheses of the MVT in some
interval [a, b, then f also satisfies the hypotheses in every interval contained in |a,b].

Reason for Theorem 5. Suppose f'(x) > 0 for all x witha <z <b. If a < s <t <b, we
may apply the MVT to f on [s, ], deducing there is a ¢ with s < ¢ < t such that
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But ¢ — s and f/(c) are positive, so their product is positive; that is, f(s) < f(%).
The second part of Theorem 5 is shown similarly. For the third and fourth, we use the
same ideas but the details are more elaborate. If you're curious, see me in office hours! [

,oor f(t) = f(s) = f'(e)(t —s).

Example 9. The converse of Theorem 5 is not true: If f(x) = 23, then f'(z) = 32*> = 0 at
x = 0. Despite this, f is increasing!

We can use Theorem 5 to graph functions in a “holistic” way. (Plotting many points is
the “reductionistic” way.)

Example 10. Let f(x) = (22 — 4)%. Find the intervals where f is increasing or decreasing,
and convex or concave, and use these to sketch the graph.

We first calculate the first and second derivatives. Expanding, f(z) = z* — 822+ 16. By
differentiation rules, we get

fl(z) = 42° — 162 = 4w(2® — 4) = 4o(z — 2) (v + 2),
() =122 — 16 = 12(2? — 4/3) = 12(z — 2/V3)(z + 2/V3).
The sign of f’ can change only where f'(z) = 0, ie., at x = =2, x = 0, or x = 2. We
conclude that f’ has constant sign on the intervals (—oo, —2), (—2,0), (0,2), and (2, 00).
We can determine the sign on each interval by plugging in a “test point”. For instance

f'(1)=4(-1)(3) <0, s0 f(z) <0if 0 <z < 2. The signs of f' may be found similarly for
the other intervals.

Similarly, the sign of f” can change only where f”(x) = 0, i.e., at = +2/+/3. Since
£"(0) < 0, we deduce that f"(x) <0 for —2/v/3 < 2 < 2/+/3.

We may summarize our findings with sign diagrams:
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Now we're ready to sketch. For each x where f'(z) =0 or f”(z) = 0, we calculate a y value
and plot that point. Then we connect the dots, making sure the function is increasing or
decreasing, and is convex or concave, as determined by the sign diagrams.



