Supplement 6: Approximate Linearity

Suppose f is a differentiable function, let a be a point of the domain of f, and define $\ell(x)=f(a)+f^{\prime}(a)(x-a)$, a function whose graph is the tangent line to $y=f(x)$ at $(a, f(a))$.

The difference $f(x)-\ell(x)$ measures "how good an approximation" $\ell(x)$ is to $f(x)$. Write $E(x)=f(x)-\ell(x)$ (with E for "error"), so that

$$
f(x)=f(a)+f^{\prime}(a)(x-a)+E(x) .
$$

Since f is differentiable at a, we have

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} .
$$

Subtracting $f^{\prime}(a)$ from both sides gives

$$
0=\lim _{x \rightarrow a} \frac{f(x)-f(a)-f^{\prime}(a)(x-a)}{x-a}=\lim _{x \rightarrow a} \frac{f(x)-\ell(x)}{x-a}=\lim _{x \rightarrow a} \frac{E(x)}{x-a} .
$$

This equation says the function ℓ is so good an approximation to f near a that the error $E(x)=f(x)-\ell(x)$ is small even compared to $x-a$.

Conversely, if f is a function, and if m is a real number such that

$$
0=\lim _{x \rightarrow a} \frac{f(x)-f(a)-m(x-a)}{x-a},
$$

then f is differentiable at a, and $f^{\prime}(a)=m$. In words, a function f is differentiable at a if and only if f is "approximately linear" at a.

We can use approximate linearity to prove the product rule differently than the book does: Assume f and g are differentiable at a, so that

$$
f(x)=f(a)+f^{\prime}(a)(x-a)+E_{f}(x), \quad g(x)=g(a)+g^{\prime}(a)(x-a)+E_{g}(x) .
$$

Multiplying these and gathering like terms,

$$
f(x) g(x)=f(a) g(a)+\left[f(a) g^{\prime}(a)+f^{\prime}(a) g(a)\right](x-a)+E(x),
$$

where $E(x) /(x-a) \rightarrow 0$ as $x \rightarrow a$. The coefficient of $(x-a)$, namely $f(a) g^{\prime}(a)+f^{\prime}(a) g(a)$, must be the derivative of $f g$ at a.

We can now prove the quotient rule in two stages. First, if g is differentiable at a and if $g(a) \neq 0$, then

$$
\lim _{x \rightarrow a} \frac{\frac{1}{g(x)}-\frac{1}{g(a)}}{x-a}=\lim _{x \rightarrow a} \frac{\frac{g(a)-g(x)}{g(a) g(x)}}{x-a}=\lim _{x \rightarrow a}-\frac{g(x)-g(a)}{x-a} \cdot \frac{1}{g(a) g(x)}=-\frac{g^{\prime}(a)}{g(a)^{2}} .
$$

That is, $1 / g$ is differentiable at a, and $(1 / g)^{\prime}(a)=-g^{\prime}(a) / g(a)^{2}$. The product rule applied to $f / g=f \cdot(1 / g)$ now gives

$$
\left(\frac{f}{g}\right)^{\prime}(a)=f(a)\left(\frac{1}{g}\right)^{\prime}(a)+f^{\prime}(a) \frac{1}{g(a)}=-\frac{f(a) g^{\prime}(a)}{g(a)^{2}}+\frac{f^{\prime}(a)}{g(a)}=\frac{g(a) f^{\prime}(a)-f(a) g^{\prime}(a)}{g(a)^{2}}
$$

