College of the Holy Cross
 Math 135 (Calculus I)
 Supplement 4: Limits of Trig Functions (October 5)

Sine in Degrees The sine function in degrees is the sinusoid whose period is 360 , the number of degrees in one full turn of a circle. In terms of the "ordinary" sine function (in radians),

$$
\sin ^{\circ} \theta=\sin \left(\frac{\pi}{180} \theta\right) .
$$

The multiplier $\frac{\pi}{180}$ is the number of radians in one degree of angle, and converts radians to degrees.

By calculations from class,

$$
\lim _{\theta \rightarrow 0} \frac{\sin ^{\circ} \theta}{\theta}=\lim _{\theta \rightarrow 0} \frac{\sin \left(\frac{\pi}{180} \theta\right)}{\theta}=\frac{\pi}{180}
$$

The tangent line to the graph $y=\sin \theta$ at $(0,0)$ has equation $y=\theta$. Again, this is why we use radians to measure angle in calculus.

The tangent line to the graph $y=\sin ^{\circ} \theta$ at $(0,0)$ has less pleasant equation $y=\frac{\pi}{180} \theta$. To graph one full oscillation of $\sin ^{\circ}$ with the vertical scale above would require a plot 180 inches (15 feet) wide.

Polynomial Approximations Cosine and sine turn out to have approximations

$$
\begin{aligned}
\cos \theta & =1-\frac{\theta^{2}}{2!}+\frac{\theta^{4}}{4!}-\frac{\theta^{6}}{6!}+\ldots & \sin \theta & =\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}-\frac{\theta^{7}}{7!}+\ldots \\
& =1-\frac{\theta^{2}}{2}+\frac{\theta^{4}}{24}-\frac{\theta^{6}}{720}+\ldots, & & =\theta-\frac{\theta^{3}}{6}+\frac{\theta^{5}}{120}-\frac{\theta^{7}}{5040}+\ldots
\end{aligned}
$$

The pattern of coefficients continues, and in a well-defined mathematical sense, the equalities are exact when "the number of terms is infinite". You can see shadows of these "series expansions" in three formulas we deduced in class today:

$$
\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1, \quad \lim _{\theta \rightarrow 0} \frac{1-\cos \theta}{\theta^{2}}=\frac{1}{2}, \quad \quad \sin ^{\prime} \theta=\cos \theta
$$

(For the first two, rearrange the series and set $\theta=0$. For the third, you'll need a formula we've implicitly deduced, that the derivative of $f(\theta)=\theta^{n}$ is $f^{\prime}(\theta)=n \theta^{n-1}$.)

When we estimated that $\cos (0.01) \approx 1-0.5(0.01)^{2}$, the series representation of $\cos \theta$ shows that the error of this estimate is smaller than $\frac{1}{24}(0.01)^{4}<0.5 \times 10^{-9}$. This explains the claim made in class that this estimate is correct to nine decimal places.

