College of the Holy Cross Math 135 (Calculus I) Supplement 3: Stereographic Projection and Pythagorean Triples (October 1)

Stereographic Projection Let $(x, y) \neq (0, 1)$ be a point on the unit circle $x^2 + y^2 = 1$, and let (t, 0) be the point where the ray from (0, 1) to (x, y) crosses the x-axis. The triangle with vertices (0, 1), (x, y), and (0, y) is similar to the triangle with vertices (0, 1), (t, 0), and (0, 0). It follows that the width-to-height ratios are the same: t = x/(1-y), or x = t(1-y).

To express (x, y) in terms of t, plug x = t(1 - y) into the equation of the unit circle:

$$1 = x^{2} + y^{2} = t^{2}(1 - y)^{2} + y^{2},$$

or $1 - y^2 = t^2(1 - y)^2$. Since $y \neq 1$, we may factor the difference of squares on the left and cancel 1 - y, giving $1 + y = t^2(1 - y) = t^2 - t^2y$. Moving the ys to the left and the non-ys to the right, $y(t^2 + 1) = t^2 - 1$, or $y = (t^2 - 1)/(t^2 + 1)$. Finally,

$$x = t(1 - y) = t \left[1 - \frac{t^2 - 1}{t^2 + 1} \right] = t \frac{(t^2 + 1) - (t^2 - 1)}{t^2 + 1} = \frac{2t}{t^2 + 1}.$$

Thus, as claimed in class, $(x, y) = \left(\frac{2t}{t^2 + 1}, \frac{t^2 - 1}{t^2 + 1}\right)$. As $t \to \infty$ or $t \to -\infty$, $(x, y) \to (0, 1)$.

Pythagorean Triples If t = p/q is a rational number (ratio of integers), then

$$(x,y) = \left(\frac{2t}{t^2+1}, \frac{t^2-1}{t^2+1}\right) = \left(\frac{2p/q}{(p/q)^2+1}, \frac{(p/q)^2-1}{(p/q)^2+1}\right) = \left(\frac{2pq}{p^2+q^2}, \frac{p^2-q^2}{p^2+q^2}\right)$$

Conversely, if (x, y) is a point on the unit circle and x, y are both rational, then t = x/(1-y) is rational. That is, our description of the unit circle gives a "one-to-one correspondence" between rational numbers and rational points on the unit circle other than (0, 1).

If (A, B, C) is a Pythagorean triple, i.e., a triple of integers satisfying $A^2 + B^2 = C^2$ (and with $C \neq 0$), then (x, y) = (A/C, B/C) is a rational point on the unit circle.

Conversely, if (x, y) = (A/C, B/C) is a rational point on the circle, then (A, B, C) is a Pythagorean triple, and there exist integers p and q such that

$$A = 2pq$$
, $B = p^2 - q^2$, $C = p^2 + q^2$.

If we assume 0 < q < p, then A and B are positive. We may then read off as many distinct Pythagorean triples as we like, e.g.,

q, p	1, 2	1,3	2,3	1, 4	3, 4	2,5	1, 6
A	4	6	12	8	24	20	12
B	3	8	5	15	7	21	35
C	5	10	13	17	25	29	37