College of the Holy Cross
 Math 135 (Calculus I)

Supplement 3: Stereographic Projection and Pythagorean Triples (October 1)
Stereographic Projection Let $(x, y) \neq(0,1)$ be a point on the unit circle $x^{2}+y^{2}=1$, and let $(t, 0)$ be the point where the ray from $(0,1)$ to (x, y) crosses the x-axis. The triangle with vertices $(0,1),(x, y)$, and $(0, y)$ is similar to the triangle with vertices $(0,1),(t, 0)$, and $(0,0)$. It follows that the width-to-height ratios are the same: $t=x /(1-y)$, or $x=t(1-y)$.

To express (x, y) in terms of t, plug $x=t(1-y)$ into the equation of the unit circle:

$$
1=x^{2}+y^{2}=t^{2}(1-y)^{2}+y^{2},
$$

or $1-y^{2}=t^{2}(1-y)^{2}$. Since $y \neq 1$, we may factor the difference of squares on the left and cancel $1-y$, giving $1+y=t^{2}(1-y)=t^{2}-t^{2} y$. Moving the $y s$ to the left and the non-ys to the right, $y\left(t^{2}+1\right)=t^{2}-1$, or $y=\left(t^{2}-1\right) /\left(t^{2}+1\right)$. Finally,

$$
x=t(1-y)=t\left[1-\frac{t^{2}-1}{t^{2}+1}\right]=t \frac{\left(t^{2}+1\right)-\left(t^{2}-1\right)}{t^{2}+1}=\frac{2 t}{t^{2}+1} .
$$

Thus, as claimed in class, $(x, y)=\left(\frac{2 t}{t^{2}+1}, \frac{t^{2}-1}{t^{2}+1}\right)$. As $t \rightarrow \infty$ or $t \rightarrow-\infty,(x, y) \rightarrow(0,1)$.
Pythagorean Triples If $t=p / q$ is a rational number (ratio of integers), then

$$
(x, y)=\left(\frac{2 t}{t^{2}+1}, \frac{t^{2}-1}{t^{2}+1}\right)=\left(\frac{2 p / q}{(p / q)^{2}+1}, \frac{(p / q)^{2}-1}{(p / q)^{2}+1}\right)=\left(\frac{2 p q}{p^{2}+q^{2}}, \frac{p^{2}-q^{2}}{p^{2}+q^{2}}\right) .
$$

Conversely, if (x, y) is a point on the unit circle and x, y are both rational, then $t=x /(1-y)$ is rational. That is, our description of the unit circle gives a "one-to-one correspondence" between rational numbers and rational points on the unit circle other than $(0,1)$.

If (A, B, C) is a Pythagorean triple, i.e., a triple of integers satisfying $A^{2}+B^{2}=C^{2}$ (and with $C \neq 0)$, then $(x, y)=(A / C, B / C)$ is a rational point on the unit circle.

Conversely, if $(x, y)=(A / C, B / C)$ is a rational point on the circle, then (A, B, C) is a Pythagorean triple, and there exist integers p and q such that

$$
A=2 p q, \quad B=p^{2}-q^{2}, \quad C=p^{2}+q^{2} .
$$

If we assume $0<q<p$, then A and B are positive. We may then read off as many distinct Pythagorean triples as we like, e.g.,

q, p	1,2	1,3	2,3	1,4	3,4	2,5	1,6
A	4	6	12	8	24	20	12
B	3	8	5	15	7	21	35
C	5	10	13	17	25	29	37

