College of the Holy Cross

Math 135 (Calculus I)

Supplement 2: Pascal's Triangle and the Binomial Theorem (September 26)

Computing $(a+h)^{2}=(a+h)(a+h)=a^{2}+2 a h+h^{2}$ is easy enough, but higher powers quickly become onerous. The insight leading to Pascal's triangle can be expressed as a "recursive" application of the distributive law. Since $(a+h)^{3}=(a+h)^{2}(a+h)$, we have

$$
\begin{aligned}
(a+h)^{3}= & \left(a^{2}+2 a h+h^{2}\right)(a+h) \\
= & \left(a^{2}+2 a h+h^{2}\right) a+\left(a^{2}+2 a h+h^{2}\right) h \\
= & a^{3}+2 a^{2} h+a h^{2} \\
& \quad+a^{2} h+2 a h^{2}+h^{3} \\
= & a^{3}+3 a^{2} h+3 a h^{2}+h^{3} .
\end{aligned}
$$

Similarly, we can use this cube formula to extend to fourth powers:

$$
\begin{aligned}
(a+h)^{4}= & \left(a^{3}+3 a^{2} h+3 a h^{2}+h^{3}\right)(a+h) \\
= & \left(a^{3}+3 a^{2} h+3 a h^{2}+h^{3}\right) a+\left(a^{3}+3 a^{2} h+3 a h^{2}+h^{3}\right) h \\
= & a^{4}+3 a^{3} h+3 a^{2} h^{2}+a h^{3} \\
& \quad+a^{3} h+3 a^{2} h^{2}+3 a h^{3}+h^{4} \\
= & a^{4}+4 a^{3} h+6 a^{2} h^{2}+4 a h^{3}+h^{4} .
\end{aligned}
$$

If you want to be sure you understand, write out the calculations for the fifth power, convincing yourself that the coefficients arise by "duplicating" the sequence $1,4,6,4,1$, shifting one copy by one space, and adding to get $1,5,10,10,5,1$.

Since the issue came up in class: To expand $(3 x-2 y)^{4}$, it would be easiest (given what we now know) to introduce $a=3 x$ and $h=-2 y$, so that $3 x-2 y=a+h$. Use the preceding formula to expand, and replace a by $3 x$ and h by $-2 y$:

$$
\begin{aligned}
(3 x-2 y)^{4} & =(3 x)^{4}+4(3 x)^{3}(-2 y)+6(3 x)^{2}(-2 y)^{2}+4(3 x)(-2 y)^{3}+(-2 y)^{4} \\
& =81 x^{4}-216 x^{3} y+216 x^{2} y^{2}-96 x y^{3}+16 y^{4} .
\end{aligned}
$$

We won't need this in calculus, but in probability you very well might.
Finally, for those of you who like formulas, the coefficient of $a^{n-k} h^{k}$ in $(a+h)^{n}$ is the binomial coefficient $\binom{n}{k}$, read " n choose k ", and equal to

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}=\binom{n}{n-k} .
$$

(If $n>0$ is an integer, the factorial n ! is the product of the integers from 1 to n. We define $0!=1$.) For instance, the coefficients in the fourth power are

$$
\binom{4}{0}=\binom{4}{4}=\frac{4!}{0!4!}=1, \quad\binom{4}{1}=\binom{4}{3}=\frac{4!}{1!3!}=4, \quad\binom{4}{2}=\frac{4!}{2!2!}=\frac{24}{4}=6,
$$

just as we found above. The binomial theorem may be expressed as
$(a+h)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} h^{k}=\binom{n}{0} a^{n}+\binom{n}{1} a^{n-1} h+\binom{n}{2} a^{n-2} h^{2}+\cdots+\binom{n}{n-1} a h^{n-1}+\binom{n}{n} h^{n}$.

