College of the Holy Cross
 Math 135 (Calculus I)
 Supplement 1: Power Functions (September 7)

A power function has the form $f(x)=c x^{r}$, with c and r numbers, and (usually) $x>0$. The constant c is the coefficient, and r is the exponent.
Example 1. The circumference of a circle is $f(x)=2 \pi x$. Here $c=2 \pi$ and $r=1$. Because $r=1$, the circumference of a circle is proportional to the radius.

Question: Suppose a long string were tied snug around the earth at the equator. If we make the string 30 feet longer and have it run at a fixed height above the ground, about how high off the ground is the string: Enough room for an atom? For a bacterium? For a mouse? For a person? (Answer below.)
Example 2. The volume of a solid ball of radius x is $V(x)=\frac{4}{3} \pi x^{3}$, while the surface area is $A(x)=4 \pi x^{2}$.

A spherical biological cell of radius x contains a metabolizing volume proportional to x^{3}, but a membrane whose area is proportional to x^{2}. Nutrients can enter a cell, and waste products can leave the cell, only through the membrane.

Doubling the radius multiplies the total metabolism by a factor of 8 , but multiplies the membrane's area only by a factor of 4 , and therefore doubles the cell's nutrient and wastedisposal requirements per unit capacity. A large cell cannot feed itself or dispose of waste products quickly enough to survive.
(Contrast this with the relative scale-invariance of many inorganic phenomena, such as mudslides after the recent earthquake in Hokkaido and rivulets left by the curb after a rain storm, or the clouds of dust in front of the Milky Way versus clouds you see in the sky.)
Example 3. To a good approximation, the apparent size (on your retina or in a photograph) of a distant object is inversely proportional to the distance x. For instance, the apparent height of a particular person at distance x is about $h(x)=c / x$. Thus, an object twice as far from your eye looks about half as large.

Question: The full moon is about the same apparent size as the following held at arm's length: a pea, a penny, a peach. Try to answer this by "first impression", then make an educated guess. (Answer below.)
Example 4. Any two points in the first quadrant (not on a vertical line) lie on a unique power graph. To find the power graph $y=c x^{r}$ passing through the points $(2,5)$ and $(8,40)$, we first use each point (x, y) to get an equation involving c and r :

$$
5=c \cdot 2^{r}, \quad 40=c \cdot 8^{r}
$$

To solve, it's usually easiest to divide one by the other to eliminate c. Here, dividing the second by the first gives $(40 / 5)=(8 / 2)^{r}$, or $8=4^{r}$, so $r=3 / 2$. Plugging this into the first equation gives $c=5 / 2^{r}=5 / 2^{3 / 2}$. Our power law is therefore $y=\left(5 / 2^{3 / 2}\right) x^{3 / 2}=5(x / 2)^{3 / 2}$.

Answers. If r_{0} is the earth's radius in feet, the circumference, i.e., the length of the string, is $2 \pi r_{0}$. Lengthening the string increases this to $2 \pi r_{0}+30=2 \pi\left(r_{0}+\Delta r\right)$, where Δr is the height of the string from the ground. Solving for Δr gives $\Delta r=30 /(2 \pi) \approx 5$: The longer string is nearly 5 feet off the ground, high enough for a person to stoop and walk beneath.

The moon is about 2200 miles in diameter, and lies about 238,000 miles (about 100 diameters) from the earth. Your arm is about 30 inches long, so an object $1 / 100$ that diameter, $1 / 3$ of an inch, looks the same size at arm's length. That's "a pea".

