College of the Holy Cross, Fall Semester, 2018 Math 135-06, Midterm 2 Review Sheet (Professor Hwang)

The second midterm in Math 135-06 will emphasize the material from Chapter 2 and the first two sections of Chapter 3 that we've covered in class and on supplementary notes, on the problem sets and practice questions, and on the worksheets and group work.

- Rates of change, limits of functions given by closed formulas, one-sided limits, infinite limits, limits at infinity, the squeeze theorem.
- The limits $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1, \quad \lim _{\theta \rightarrow 0} \frac{1-\cos \theta}{\theta}=0, \quad \lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1$, and consequences.
- Continuous functions, removable and jump discontinuities, infinite discontinuities. The intermediate value theorem and applications.
- Difference quotients, computing derivatives as limits of difference quotients, the derivative as a function.

The questions below range from routine to challenging. They're generally harder than test questions, but use nothing beyond techniques we've covered.

1. Evaluate the limits: $\quad \lim _{x \rightarrow 4} \frac{x^{4}-256}{x-4} ; \quad \lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x-4} ; \quad \lim _{x \rightarrow 4} \frac{\frac{1}{x}-\frac{1}{4}}{x-4} ; \quad \lim _{x \rightarrow 4} \frac{\frac{1}{\sqrt{x}}-\frac{1}{2}}{x-4}$.
2. (a) Verify that $b^{3}-a^{3}=(b-a)\left(b^{2}+a b+a^{2}\right)$.
(b) Use part (a) to evaluate $\lim _{x \rightarrow 8} \frac{\sqrt[3]{x}-2}{x-8}$.
3. Evaluate the limits: $\lim _{h \rightarrow 0} \frac{\sin (\pi h)}{h} ; \quad \lim _{h \rightarrow 0} \frac{\sin (\pi h)}{\sin h} ; \quad \lim _{h \rightarrow 0} \frac{1-\cos h}{h^{2}} ; \quad \lim _{h \rightarrow 0} \frac{1-\cos ^{2} h}{h^{2}}$.
4. Evaluate the limits: $\lim _{h \rightarrow 0} \frac{e^{3 h}-1}{h} ; \quad \lim _{h \rightarrow 0} \frac{e^{-h}-1}{h} ; \quad \lim _{h \rightarrow 0} \frac{e^{h^{2}}-1}{h^{2}} ; \quad \lim _{h \rightarrow 0} \frac{2^{h}-1}{h}$.
5. Give an example of:
(a) A function f so that $\lim _{x \rightarrow 0} f(x)$ does not exist, but $\lim _{x \rightarrow 0}|f(x)|=1$.
(b) Functions f, g so that $\lim _{x \rightarrow 0} f(x), \lim _{x \rightarrow 0} g(x)$ do not exist, but $\lim _{x \rightarrow 0} f(x) g(x)$ exists.
(c) Functions f, g so that $\lim _{x \rightarrow 0} f(x)=\infty, \lim _{x \rightarrow 0} g(x)=0$, and:
(i) $\lim _{x \rightarrow 0} f(x) g(x)=\infty$;
(ii) $\lim _{x \rightarrow 0} f(x) g(x)=0$;
(iii) $\lim _{x \rightarrow 0} f(x) g(x)=\pi$.
6. Suppose $f(x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$.
(a) Find the domain of f, and the limits of $f(x)$ as $x \rightarrow \infty$ and as $x \rightarrow-\infty$.
(b) Using results we have covered, show f is increasing: If $u<v$, then $f(u)<f(v)$.
(c) Sketch the graph of f.
7. In each part, $f(x)=\left\lfloor x^{2}\right\rfloor$ and $g(x)=\left\lceil x^{2}\right\rceil$.
(a) Sketch the graphs $y=f(x)$ and $y=g(x)$. Hint: First sketch $y=x^{2}$.
(b) Find the one-sided limits of f and of g at $c=2$; at $c=-\sqrt{2}$.
8. Let $f(x)=\frac{1}{2}\lfloor 2 x\rfloor$. Sketch the graph $y=f(x)$, determine where f is discontinuous, and find the one-sided limits at the discontinuities.
9. Granted that $\ln x \rightarrow \infty$ as $x \rightarrow \infty$, what is the limit as $x \rightarrow \infty$ of $f(x)=\ln (\ln x)$, and what is the domain of f ? If $f(c)=10$, what is c ? How many digits does c have? Hint: A positive real number x (not a power of 10) has $\lceil\log x\rceil$ digits.
10. (a) Find the equation of the tangent line to the parabola $y=x^{2}$ at $\left(a, a^{2}\right)$.
(b) If $\left(x_{0}, y_{0}\right)$ does not lie on the parabola $y=x^{2}$, how many tangent lines to the parabola pass through $\left(x_{0}, y_{0}\right)$? (The answer depends on the point, and can be guessed easily from a sketch; give an algebraic justification using part (a).)
11. Show there are at least two positive c satisfying $c^{1000}=e^{c}$.
12. (a) Calculate the derivative $\cos ^{\prime} a=\lim _{h \rightarrow 0} \frac{\cos (a+h)-\cos a}{h}$. Hint: Look up the formula for $\cos (x+y)$.
(b) Find the slope-intercept equation of the line tangent to the graph $y=\cos x$ at the point $(a, \cos a)$.
(c) Show that there is a point c between 0 and π so that the tangent line to $y=\cos x$ at $(c, \cos c)$ passes through the origin, and illustrate with a sketch.
13. Show the graph $y=e^{x}$ has precisely one tangent line passing through the origin.
14. Use the definition to calculate the derivative at x of $f(x)=e^{x}$ and $g(x)=2^{x}$.
15. (a) Use the definition to calculate the derivative of $f(x)=\frac{\sin x}{x}$.
(b) Show there exists a c between $\frac{\pi}{2}$ and $\frac{3 \pi}{2}$ such that $f^{\prime}(c)=0$.
16. If $f(x)=x^{2} \sin (1 / x)$ for $x \neq 0$ and $f(0)=0$, show $f^{\prime}(0)$ exists. Hint: You must use the definition (and the squeeze theorem) even if you know calculus. Why?
17. (a) If $y=f(x)$ is an invertible function, $x=g(y)$ is the inverse, and $y+k=f(x+h)$, what is the exact relationship between the difference quotients

$$
\frac{f(x+h)-f(x)}{h}, \quad \frac{g(y+k)-g(y)}{k} ?
$$

(b) Use (a) and the fact that $f(x)=e^{x}$ is its own derivative to find the derivative of \ln at a positive number y. Hint: $y+k=e^{x+h}$ means $x+h=\ln (y+k)$.
(c) Evaluate $\lim _{h \rightarrow 0}(1+h)^{1 / h}=\lim _{h \rightarrow 0} e^{\frac{1}{h} \ln (1+h)}$ and $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=\lim _{n \rightarrow \infty} e^{n \ln \left(1+\frac{1}{n}\right)}$.
(c) If $r>0$, evaluate the continuously-compounded interest multiplier $\lim _{n \rightarrow \infty}\left(1+\frac{r}{n}\right)^{n t}$.

