College of the Holy Cross, Fall Semester, 2018 Math 135-06, Midterm 2 Review Sheet (Professor Hwang)

The second midterm in Math 135-06 will emphasize the material from Chapter 2 and the first two sections of Chapter 3 that we've covered in class and on supplementary notes, on the problem sets and practice questions, and on the worksheets and group work.

- Rates of change, limits of functions given by closed formulas, one-sided limits, infinite limits, limits at infinity, the squeeze theorem.
- The limits $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$, $\lim_{\theta \to 0} \frac{1 \cos \theta}{\theta} = 0$, $\lim_{h \to 0} \frac{e^h 1}{h} = 1$, and consequences.
- Continuous functions, removable and jump discontinuities, infinite discontinuities. The intermediate value theorem and applications.
- Difference quotients, computing derivatives as limits of difference quotients, the derivative as a function.

The questions below range from routine to challenging. They're generally harder than test questions, but use nothing beyond techniques we've covered.

1. Evaluate the limits:
$$\lim_{x \to 4} \frac{x^4 - 256}{x - 4}; \quad \lim_{x \to 4} \frac{\sqrt{x} - 2}{x - 4}; \quad \lim_{x \to 4} \frac{\frac{1}{x} - \frac{1}{4}}{x - 4}; \quad \lim_{x \to 4} \frac{\frac{1}{\sqrt{x}} - \frac{1}{2}}{x - 4};$$

2. (a) Verify that $b^3 - a^3 = (b - a)(b^2 + ab + a^2).$

(b) Use part (a) to evaluate
$$\lim_{x \to 8} \frac{\sqrt[3]{x-2}}{x-8}$$
.

3. Evaluate the limits:
$$\lim_{h \to 0} \frac{\sin(\pi h)}{h}$$
; $\lim_{h \to 0} \frac{\sin(\pi h)}{\sin h}$; $\lim_{h \to 0} \frac{1 - \cos h}{h^2}$; $\lim_{h \to 0} \frac{1 - \cos^2 h}{h^2}$.
4. Evaluate the limits: $\lim_{h \to 0} \frac{e^{3h} - 1}{h}$; $\lim_{h \to 0} \frac{e^{-h} - 1}{h}$; $\lim_{h \to 0} \frac{e^{h^2} - 1}{h^2}$; $\lim_{h \to 0} \frac{2^h - 1}{h}$.

- 5. Give an example of:
 - (a) A function f so that $\lim_{x \to 0} f(x)$ does not exist, but $\lim_{x \to 0} |f(x)| = 1$.
 - (b) Functions f, g so that $\lim_{x\to 0} f(x), \lim_{x\to 0} g(x)$ do not exist, but $\lim_{x\to 0} f(x)g(x)$ exists.

 - (c) Functions f, g so that $\lim_{x\to 0} f(x) = \infty$, $\lim_{x\to 0} g(x) = 0$, and: (i) $\lim_{x\to 0} f(x)g(x) = \infty$; (ii) $\lim_{x\to 0} f(x)g(x) = 0$; (iii) $\lim_{x\to 0} f(x)g(x) = \pi$.
- 6. Suppose $f(x) = \frac{e^x e^{-x}}{e^x + e^{-x}}$.
 - (a) Find the domain of f, and the limits of f(x) as $x \to \infty$ and as $x \to -\infty$.
 - (b) Using results we have covered, show f is increasing: If u < v, then f(u) < f(v).
 - (c) Sketch the graph of f.

- 7. In each part, $f(x) = \lfloor x^2 \rfloor$ and $g(x) = \lceil x^2 \rceil$.
 - (a) Sketch the graphs y = f(x) and y = g(x). Hint: First sketch $y = x^2$.
 - (b) Find the one-sided limits of f and of g at c = 2; at $c = -\sqrt{2}$.
- 8. Let $f(x) = \frac{1}{2} \lfloor 2x \rfloor$. Sketch the graph y = f(x), determine where f is discontinuous, and find the one-sided limits at the discontinuities.
- 9. Granted that $\ln x \to \infty$ as $x \to \infty$, what is the limit as $x \to \infty$ of $f(x) = \ln(\ln x)$, and what is the domain of f? If f(c) = 10, what is c? How many digits does c have? Hint: A positive real number x (not a power of 10) has $\lceil \log x \rceil$ digits.
- 10. (a) Find the equation of the tangent line to the parabola y = x² at (a, a²).
 (b) If (x₀, y₀) does not lie on the parabola y = x², how many tangent lines to the parabola pass through (x₀, y₀)? (The answer depends on the point, and can be guessed easily from a sketch; give an algebraic justification using part (a).)
- 11. Show there are at least two positive c satisfying $c^{1000} = e^c$.
- 12. (a) Calculate the derivative $\cos' a = \lim_{h \to 0} \frac{\cos(a+h) \cos a}{h}$. Hint: Look up the formula for $\cos(x+y)$.

(b) Find the slope-intercept equation of the line tangent to the graph $y = \cos x$ at the point $(a, \cos a)$.

(c) Show that there is a point c between 0 and π so that the tangent line to $y = \cos x$ at $(c, \cos c)$ passes through the origin, and illustrate with a sketch.

- 13. Show the graph $y = e^x$ has precisely one tangent line passing through the origin.
- 14. Use the definition to calculate the derivative at x of $f(x) = e^x$ and $g(x) = 2^x$.
- 15. (a) Use the definition to calculate the derivative of $f(x) = \frac{\sin x}{x}$.

(b) Show there exists a c between $\frac{\pi}{2}$ and $\frac{3\pi}{2}$ such that f'(c) = 0.

- 16. If $f(x) = x^2 \sin(1/x)$ for $x \neq 0$ and f(0) = 0, show f'(0) exists. Hint: You must use the definition (and the squeeze theorem) even if you know calculus. Why?
- 17. (a) If y = f(x) is an invertible function, x = g(y) is the inverse, and y+k = f(x+h), what is the exact relationship between the difference quotients

$$\frac{f(x+h) - f(x)}{h}, \qquad \frac{g(y+k) - g(y)}{k}?$$

(b) Use (a) and the fact that $f(x) = e^x$ is its own derivative to find the derivative of ln at a positive number y. Hint: $y + k = e^{x+h}$ means $x + h = \ln(y+k)$.

- (c) Evaluate $\lim_{h \to 0} (1+h)^{1/h} = \lim_{h \to 0} e^{\frac{1}{h} \ln(1+h)}$ and $\lim_{n \to \infty} (1+\frac{1}{n})^n = \lim_{n \to \infty} e^{n \ln(1+\frac{1}{n})}$.
- (c) If r > 0, evaluate the continuously-compounded interest multiplier $\lim_{n \to \infty} (1 + \frac{r}{n})^{nt}$.