College of the Holy Cross
 Even and Odd Functions

A function f is said to be even if $f(-x)=f(x)$ for all x in the domain of f. Geometrically, the graph of an even function remains the same under a reflection about the vertical axis:

A function f is said to be odd if $f(-x)=-f(x)$ for all x in the domain of f. Geometrically, the graph of an odd function remains the same under a half-turn rotation about the origin:

Most functions are neither even nor odd. However, every function f whose domain is symmetric about 0 can be written uniquely (in exactly one way) as the sum of an even function and an odd function. For example, if $f(x)=e^{x}$, then the functions

$$
E(x)=\frac{1}{2}\left(e^{x}+e^{-x}\right), \quad O(x)=\frac{1}{2}\left(e^{x}-e^{-x}\right),
$$

are even and odd, respectively (why?), and their sum is e^{x}. Similar formulas decompose an arbitrary function into even and odd parts.

The even and odd parts of e^{x} are important enough to get special names and special notation: We call

$$
\cosh (x)=\frac{1}{2}\left(e^{x}+e^{-x}\right) \quad \text { and } \quad \sinh (x)=\frac{1}{2}\left(e^{x}-e^{-x}\right)
$$

the hyperbolic cosine function and the hyperbolic sine function.
These functions satisfy properties closely related to the circular trig functions. You may enjoy showing that $\cosh ^{2} x-\sinh ^{2} x=1, \cosh ^{\prime} x=\sinh x$, and $\sinh ^{\prime} x=\cosh x$.

