College of the Holy Cross
 Math 135 (Calculus I)
 Group Work 2 Solutions: Tangent Lines and the IVT

1. Let a stand for an arbitrary real number.
(a) Find the slope-intercept equation of the line tangent to the parabola $y=x^{2}$ at the point where $x=a$.
Solution The point of tangency is $\left(a, a^{2}\right)$. At this point, the slope is

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{(a+h)^{2}-a^{2}}{h}=\lim _{h \rightarrow 0} \frac{a^{2}+2 a h+h^{2}-a^{2}}{h}=\lim _{h \rightarrow 0} \frac{2 a h+h^{2}}{h}=\lim _{h \rightarrow 0}(2 a+h)=2 a .
$$

The point-slope equation of the tangent line is $y-y_{0}=m\left(x-x_{0}\right)$, or

$$
y-a^{2}=2 a(x-a)=2 a x-2 a^{2} .
$$

The slope-intercept form is therefore $y=2 a x-a^{2}$.
(b) Which points $\left(x_{0}, y_{0}\right)$ in the plane lie on some tangent line to the parabola $y=x^{2}$? For these points, how many distinct tangent lines contain the point?
Solution The point $\left(x_{0}, y_{0}\right)$ lies on a tangent line to the parabola precisely when there is a real a satisfying $y_{0}=2 a x_{0}-a^{2}$, or $a^{2}-\left(2 x_{0}\right) a+y_{0}=0$. The quadratic formula gives

$$
a=\frac{2 x_{0} \pm \sqrt{\left(2 x_{0}\right)^{2}-4 y_{0}}}{2}=x_{0} \pm \sqrt{x_{0}^{2}-y_{0}}
$$

There are two real solutions if $0<x_{0}^{2}-y_{0}$, i.e., if $y_{0}<x_{0}^{2}$, so $\left(x_{0}, y_{0}\right)$ lies below the parabola. There is one real solution if $x_{0}^{2}-y_{0}=0$, i.e., $\left(x_{0}, y_{0}\right)$ lies on the parabola.
There are no real solutions if $x_{0}^{2}-y_{0}<0$, i.e., $\left(x_{0}, y_{0}\right)$ lies above the parabola.

2. Each part refers to the graph $y=\cos x$, and a stands for an arbitrary real number.
(a) Calculate the derivative $\cos ^{\prime} a=\lim _{h \rightarrow 0} \frac{\cos (a+h)-\cos a}{h}$ from the definition.

Hint: For all real a and b, we have $\cos (a+b)=\cos a \cos b-\sin a \sin b$.
Solution Since $\lim _{h \rightarrow 0} \frac{\cos h-1}{h}=0$ and $\lim _{h \rightarrow 0} \frac{\sin h}{h}=1$, we have

$$
\begin{aligned}
\cos ^{\prime}(a) & =\lim _{h \rightarrow 0} \frac{\cos (a+h)-\cos a}{h}=\lim _{h \rightarrow 0} \frac{\cos a \cos h-\sin a \sin h-\cos a}{h} \\
& =\cos a \lim _{h \rightarrow 0} \frac{\cos h-1}{h}-\sin a \lim _{h \rightarrow 0} \frac{\sin h}{h}=-\sin a
\end{aligned}
$$

(b) Find the slope-intercept equation of the line tangent to the graph $y=\cos x$ at the point where $x=a$.
Solution Where $x=a$, the tangent line passes through the point $(a, \cos a)$ and has slope $m=-\sin a$. The point-slope equation of the tangent line is $y-\cos a=-\sin a(x-a)=$ $-x \sin a+a \sin a$.

The slope-intercept form is $y=-x \sin a+a \sin a+\cos a$.
(c) Show that there is a positive real number $c<\pi$ so that the tangent line in part (b) passes through the origin. (5-point bonus if you locate c to within $\pi / 12$ without a calculator.) Solution We want to show there is a $c<\pi$ such that the y-intercept $\phi(c)=c \sin c+\cos c=$ 0 . We have $\phi\left(\frac{\pi}{2}\right)=\frac{\pi}{2}>0$ and $\phi(\pi)=-1<0$. Since ϕ is a continuous function of a, the intermediate value theorem guarantees there is a c with $\frac{\pi}{2}<c<\pi$ and $\phi(c)=0$.

To locate c more precisely, we'll try bisection or other subdivision. Since

$$
\phi\left(\frac{3 \pi}{4}\right)=\frac{3 \pi}{4}\left(\frac{\sqrt{2}}{2}\right)-\frac{\sqrt{2}}{2}=\left(\frac{3 \pi}{4}-1\right) \frac{\sqrt{2}}{2}>\left(\frac{9}{4}-1\right) \frac{\sqrt{2}}{2}>0,
$$

there is a solution between $\frac{3 \pi}{4}$ and π. Bisecting again would force us to evaluate sin and \cos at $\frac{7 \pi}{8}$, so instead we'll try $\frac{5 \pi^{4}}{6}$: We have

$$
\phi\left(\frac{5 \pi}{6}\right)=\frac{5 \pi}{6} \cdot \frac{1}{2}-\frac{\sqrt{3}}{2}=\frac{5 \pi-6 \sqrt{3}}{6 \cdot 2} .
$$

Since $3<\pi$ and $\sqrt{3}<2$, we have $5 \pi-6 \sqrt{3}>5 \cdot 3-6 \cdot 2=15-12=3>0$. Thus $\phi\left(\frac{5 \pi}{6}\right)>0$, so there is a solution between $\frac{5 \pi}{6}$ and π. The midpoint, $c=\frac{11 \pi}{12}$, is accurate to within $\frac{\pi}{12}$.

