## College of the Holy Cross <br> Math 135 (Calculus I) <br> Group Work 3: Derivatives and Patching Due Monday, November 12

Do all your calculations on scratch paper. Then write up your solutions neatly, using algebraic calculations and complete sentences as appropriate, on a separate sheet of paper. Readability will earn a 10 -point bonus.

Background A differentiable function is continuous. Further, if $f$ is continuous at $c$, and if $\lim _{x \rightarrow c} f^{\prime}(x)=\ell$ exists, then $f$ is differentiable at $c$ and $f^{\prime}(c)=\ell$.

1. In each part, $f(x)=x^{2} e^{-x}$.
(a) Calculate $f^{\prime}(x)$, and find the interval(s) where $f$ is increasing or decreasing. Explain why $f$ has a maximum value for $x \geq 0$.
(b) Calculate $f^{\prime \prime}(x)$, and find the interval(s) where $f$ is convex or concave.
(c) Use the information you've found to sketch the graph $y=f(x)$ for $x \geq 0$. Be sure to include the coordinates of any interesting points.
2. Show that the function

$$
f(x)= \begin{cases}-1 & x<-1 \\ \frac{3}{2} x-\frac{1}{2} x^{3} & -1 \leq x \leq 1 \\ 1 & x<1\end{cases}
$$

is differentiable and non-decreasing on $(-\infty, \infty)$.
3. Suppose $a$ and $b$ are constants, and that

$$
f(x)= \begin{cases}a x+b & x<1 \\ x+x^{2} & 1 \leq x\end{cases}
$$

(a) Find all values of $a$ and $b$ so that $f$ is continuous on $(-\infty, \infty)$. Hint: Focus on the one-sided limits of $f$ at 1 .
(b) Find all values of $a$ and $b$ so that $f$ is differentiable on $(-\infty, \infty)$. Hint: Focus in addition on the one-sided limits of $f^{\prime}$ at 1 .
(c) On a single piece of graph paper, sketch the graphs $y=f(x)$ if $f$ is continuous and $a=-1, a=0$, or $a=1$.
4. Suppose $a$ and $b$ are constants, and that

$$
f(x)= \begin{cases}2 x-x^{2} & x<2 \\ a+(b / x) & 2 \leq x\end{cases}
$$

(a) Find all values of $a$ and $b$ so that $f$ is continuous on $(-\infty, \infty)$.
(b) Find all values of $a$ and $b$ so that $f$ is differentiable on $(-\infty, \infty)$.

