College of the Holy Cross

Math 135 (Calculus I)

Group Work 1: Polar Graphs

Due Monday, September 17

If f is a real-valued function defined on an interval $[a, b]$, the polar graph of f is the set of points with polar coordinates (r, θ) satisfying $r=f(\theta)$. For example:

$r=\cos (2 \theta)$

$r=\cos (3 \theta)$

$r=\frac{1}{2}(1+\cos \theta)$

1. On a single piece of polar graph paper, plot the following:
(a) $r=4 \sin \theta$
(b) $r=4 \sin (2 \theta)$
(c) $r=4 \sin (3 \theta)$
2. On a single piece of polar graph paper, plot the following:
(a) $r=1+3 \cos \theta$
(b) $r=2+2 \cos \theta$
(c) $r=3+\cos \theta$
3. Convert each polar equation into a Cartesian equation, and identify the graph as a familiar curve.
(a) $r=5$. Hint: Square, and use $r^{2}=x^{2}+y^{2}$.
(b) $r=5 \cos \theta$. Hint: Multiply both sides by r.
(c) $r=-4 \sin \theta$.
(d) $r=\sec \theta$. Hint: Write secant in terms of cosine.
(e) $r=3 \csc \theta$.
