
Distributed Proofreaders
LATEX Formatting Manual

August 2012

Contents

1 Overview 1
1.1 The DP Process . 1
1.2 For New LATEXers . 3

2 Guidelines 7
2.1 Formatting Text . 7
2.2 Formatting Mathematics . 13
2.3 Aligned Material . 19

1 Overview

This manual contains guidelines for volunteers at Distributed Proofreaders who format
projects using the typesetting language LATEX. It’s geared toward a variety of back-
grounds: those who have proofed and formatted thousands of pages at DP but have
always avoided LATEX, long-time LATEX users who are fairly new to DP and its ways,
and (it is hoped) everyone in between.

In the interest of brevity, this manual discusses only well-standardized, project-
independent formatting, and cautions mostly against common errors. Frequently, where
formatting decisions are concerned, you’re directed to external resources (especially,
writing to dp-feedback or posting in the forums).

Section 1 is a very brief introduction to DP, LATEX, and their distinctive inter-
relationship. Section 2 constitutes a user’s guide and reference manual, meant both to
be read for tutorial information and to be thumbed through as you format your first
pages.

Both parts are written in mostly-independent sections, culled from existing DP wiki
pages, forum posts, and private discussions. Do feel free to skip around as you read.1

Important items (such as reminders to ask for human help) are repeated as necessary so
they won’t be overlooked by non-serial readers, and potential pitfalls are clearly marked.

1.1 The DP Process

A book’s contents go through three major stages at Distributed Proofreaders: proof-
reading (“proofing”), formatting (“F1 and F2”), and post-processing (“PP”). Proofers
make typographical corrections, so the raw text matches the page scan. Formatters add
“tags” to specify how parts of the book will be presented visually. Proofing and for-
matting are distributed processes—performed one page at a time by multiple volunteers
per book, possibly over a period of weeks or months.

1That is, to read sections non-consecutively.

1

http://www.pgdp.net
http://www.tug.org
http://www.pgdp.net/wiki/Distributed_Proofreaders

The post-processor assembles the formatted content, ensuring consistency and co-
herency. After PPing, a book is ready for publication at Project Gutenberg (PG). By
nature, PPing is not distributed; a single person must make stylistic decisions for the
project as a whole.

Semantic and Visual Markup

A printed book contains meaningful typographical structures: page numbers, chapter
titles, running heads, figure captions, and so forth. In an ebook, these structures can
be encoded or marked up either “semantically” or “visually”.

Semantic markup, or WYSIWYM (“what you see is what you mean”), separates
structural meaning from typographical appearance. Instead of specifying the font weight
and alignment of chapter titles (say), you mark each chapter with a dedicated “tag”.
The visual representation of chapters is controlled by modifying a single piece of infor-
mation, the definition of the chapter tag. Other structures are marked up analogously.

By contrast, visual markup, or WYSIWYG (“what you see is what you get”), dic-
tates a document’s appearance element by element, via explicit, low-level formatting
instructions (“this text is italicized”, “this heading is centered small caps”). Word pro-
cessors are WYSIWYG by default, and visual markup is many people’s first inclination
for document encoding.

Unfortunately, visual markup suffers from two Great Flaws: It scatters formatting
instructions throughout the document instead of centralizing them (making consistency
all but impossible to achieve), and discards structural information (disparate structures
are tagged with the same markup simply because their printed appearance is similar).
Each deficiency is fatal for easily-maintainable, high-quality ebooks of archival longevity.

Project-Specific Guidelines

Experience has shown that no single set of simple guidelines will adequately handle
even a majority of LATEX projects. Instead, every LATEX project goes into the formatting
rounds with a “working preamble”, a set of project-specific macros designed to capture
the semantic structure of the printed book.

The working preamble can be found on the project page. Before you start format-
ting, please peruse the working preamble and project comments, and take care to format
using the macros supplied.

Macros in the working preamble are designed to minimize changes to the proofed
text. Their names are short and mnemonic to reduce typing, and when possible they are
simply wrapped around the proofer text to avoid errors caused by removing characters.

� Caution: Though preamble macros reproduce the typographical appearance of the
original book reasonably closely, doing so is not their primary purpose. Indeed, many
typographical decisions cannot be made until post-processing, when the font, text block
size, and other global document parameters are known. As a formatter, you should not
worry if the working preamble falls short of duplicating a book’s typography exactly.
(If the original typography is inconsistent, a brief [** Note] to the PPer is helpful.)

For example, if the book contains run-in “paragraph” headings in larger, boldface
type, each followed by a quad space, look for a dedicated macro in the project preamble,

2

http://www.gutenberg.org

and use this macro consistently to code the headings. Do not explicitly code the large,
bold font or the quad space. Such fine-tuning is elegantly and trivially handled in
post-processing by adjusting the macro definitions.

� Caution: LATEX’s standard sectioning commands tend to be non-trivially integrated
into the document class. Consequently, sectioning macros in the working preamble
are usually not the standard \chapter or \section commands. For flexibility,
DP projects instead use an “interface” layer to code a book’s structures. When possible,
macro names are capitalized variants of standard LATEX commands, such as \Chapter,
\Section, \Paragraph, and \Tag. Please take care to use these macros rather than
the standard LATEX equivalents.

1.2 For New LATEXers

If you speak LATEX, parts of this section will be superfluous. However, please skim for
information specific the DP process.

What is LATEX?

A small fraction of DP’s output is formatted in “LATEX”, conceptually a markup lan-
guage built on top of the TEX typesetting system. At DP, LATEX is used almost exclu-
sively for books containing a lot of mathematics.

DP’s projects are marked up semantically. In HTML (the majority of DP’s output),
the PPer handles most semantic aspects of document preparation, while in LATEX much
of this burden falls to the formatters. As a LATEX formatter, you need to intuit the
nature of semantic markup and eschew most visual markup.

LATEX projects are distributed by PG as a plain text “source file” and as a compiled
PDF (portable document format) file. This very manual is written in LATEX, and chances
are you’re viewing it as PDF.2 The source file is analogous to the HTML code of an
ordinary project, while the PDF corresponds approximately to the formatted text your
web browser presents. Unlike HTML, a PDF file has fixed visual appearance (fonts,
text block width, pagination, etc.), independent of how the file is previewed.

Instead of cascading style sheets code, a LATEX file contains a preamble, where se-
mantic tags and other style-determining information is defined or loaded from external
packages.

Resources

If you don’t speak LATEX, printed manuals and tutorials are an absolute necessity. The
DP LATEX Resources Wiki page contains links to a number of well-known and widely-
used references aimed at newcomers and more advanced users. There are over a dozen
DP Wiki pages devoted to various aspects of LATEX at DP. Please re-visit these pages
periodically as you study and learn.

DP-specific manuals and training resources are also available. These include a large
set of on-line worksheets that allow you to try your hand at formatting pages from real
projects, and to check your work against that of an experienced formatter.

2Unless you’re skipping around the room, holding a sheaf of papers.

3

http://www.tug.org
http://www.pgdp.net/wiki/LaTeX_resources
http://mathcs.holycross.edu/~ahwang/pgdp/dptest/index.html

There’s no substitute for human feedback as you start to format LATEX. For general
questions, use the “Formatting LATEX: ‘All questions welcome’ thread”, in the DP fo-
rums under “Common Formatting Q&A”. For project-specific issues, post in the project
discussion. The LATEX community is always pleased to help you advance your skills.

Don’t hesitate to ask for feedback repeatedly, even if you speak LATEX.
LATEX formatting entails numerous tasks, and it takes time and practice to habitualize
them. Further, DP’s requirements for simple, archival files entail special, non-obvious
coding practices that differ significantly from “normal” LATEX authoring. It’s easier for
you to receive several short messages, and easier for the pool of potential respondents
to write them. It’s also, frankly, better not to format dozens of pages only to find
you’re routinely omitting or mis-handling important code. The community considers
mentoring you to be a worthwhile investment in the future!

Formatting Duties

Formatting in a DP non-LATEX project amounts mostly to indicating chapters and sec-
tions with blank lines, marking changes of font with visual tags, and handling miscel-
laneous structures such as poetry, block quotes, and footnotes. Formatting tasks are
similar in a LATEX project, but more involved.

As a formatter, you’ll work with text that’s been carefully proofread, but from which
the mathematical content is mostly absent. Greek letters and basic algebra should have
been added in the proofing rounds, but other symbols and more complicated constructs
will have been represented as $$. This is not a plain TEX display math delimiter, but
a DP-specific convention for omitted text. You’re expected to resolve every instance
explicitly, either replacing it with LATEX code, flagging it with a [** F1: note] for
the post-processor, or both.

Chapter and sectional divisions are tagged (using macros rather than blank lines),
font changes are marked (semantically if possible), footnotes are marked using the stan-
dard LATEX \footnote command, and so on. In addition, please watch for and handle
visually subtle details, such as non-breaking spaces, periods that do not end a sen-
tence, and paragraphs starting immediately after a displayed equation. And, of course,
there’s mathematical formatting, ranging from individual symbols peppered throughout
paragraphs of text, to complex aligned equations, and everything in between.

It’s very helpful if you communicate in the project forums with other formatters to
help ensure overall consistency. Please ask if you aren’t sure how to handle a construct,
or if you encounter a situation that will require the post-processor’s attention but cannot
be easily noted in the page text.

The plain truth: LATEX formatting is complex, multifaceted, time-consuming, pains-
taking work, and requires a general understanding of what happens to projects in post-
processing. An experienced LATEX formatter typically requires 5–15 minutes to format
one page in F1, depending on the amount of mathematics and complexity of the typog-
raphy. When you start out, expect to spend 30 minutes or more per page, especially if
you’re new to LATEX.

Despite the large time per page, LATEX formatting is not impossibly difficult, but
it does involve a substantial and extended effort to become fluent, even if you already
speak LATEX. If you enjoy challenging, detail-oriented typographical work, LATEX will

4

make you very happy.

Your goal as a LATEX formatter is not to create page code exactly matching the
scanned image, but to express the semantic structure of the page simply, robustly, and
flexibly, using preamble constructs. Strive for formatting that is

• Complete: Uniform handling of font changes, ties, numerals, periods on abbrevi-
ations, and mathematical markup.

• Consistent : Coordination of effort when multiple formatters work on a project,
so that sectioning and other semantic constructs are handled the same way by
everyone.

• Correct : Proper, semantic use of preamble commands, eschewal of non-LATEX
formatting, and machine-compilability of the page text.

As noted in the third point, LATEX projects impose a requirement on formatters
having no analog elsewhere at DP. Because formatted page code must be machine-
compilable, you’re expected to test-compile every page you format, to catch both syntax
errors and output problems.

When you come across a page that’s beyond your level of confidence, don’t hesitate
to “work around” it; keep the page out, format subsequent pages, and at the end of
your session return the page to the round. It’s polite in this event to post in the project
forum, linking to the page in question. A more advanced formatter will handle the
page. There is no shame in doing this; even the most innocent-looking project may
contain pages to challenge a TEXnician.

Formatting work flow LATEX formatting involves many disparate tasks. Developing
careful, systematic work habits will both streamline your efforts and help you avoid
unnecessary errors in the pages you submit.

When you download a page of a project for formatting, you are presented with
proofed text in an editor window, just as with a non-LATEX project. Your tasks are
to (i) add the necessary formatting, (ii) test-compile the page, and (iii) submit your
formatted text as “done”.

If you use a stand-alone editor on your own computer to format LATEX, take care to
keep one particular version of the page text as the “master” copy. Add formatting and
make corrections only in that copy. Cut and paste from the master copy into the test-
compiled file, and if necessary, paste the master copy back into the formatting interface
before submitting the code.

Source files Structurally, a DP LATEX source file looks like this:

\documentclass[12pt]{book}
% Semantic definitions, a.k.a. preamble

\begin{document}
% Document text, a.k.a. body
\end{document}

5

The comment lines, starting with %, stand for the semantic formatting instructions
(or preamble) and document contents (or body), respectively. For test-compiling (see
below), you’ll probably want to create a “wrapper” file with the project’s working
preamble pasted into the appropriate location, and the line \input{project.tex}
after \begin{document}. (The file name project.tex is up to you, but will be
assumed below.)

Test-compiling The code you submit as “done” is not a complete, compilable LATEX
source file, but merely the body. Your work flow must handle the incorporation of
preamble code, but you must stringently avoid uploading preamble code when you
check in the page. A simple method is to create a project-specific wrapper file as
directed above. Each time you format a page, append the current page’s text to the
file project.tex, then compile the wrapper file and preview the output. The LATEX
formatting work flow page in the DP wiki contains suggestions on managing files.

If LATEX encounters errors when you compile your page code, it will print a warning
message and continue (if possible) or ask for your assistance. As needed, correct the
master copy of your code and recompile. Repeat until there are no compilation errors,
then preview the page to check that the output sufficiently resembles the original page
scan.

Visual checklist Some visual differences between the page scan and your compiled
code are certain to occur, because you’re compiling a single page out of context. LATEX
may insert a paragraph indentation before the first word, whether or not a new para-
graph begins there. If a numbered footnote appears, the number is almost certain to
be wrong. Such discrepancies may be safely ignored.

In mathematics, don’t spend a lot of effort duplicating alignment, especially if the
need to align clearly depends on the width of the book’s text block, or on the book’s
font. If capital-letter variables are set in an upright font, don’t try to duplicate this
by marking each symbol with an explicit font-changing command. (In such an event,
however, do ask in the project forum, in case the PM or PP has special instructions.)

Do check carefully for common, basic, but easily-missed issues. Are there words
in italics, boldface, or small capitals, and have you marked them (and any associated
punctuation) appropriately? Have you faithfully reproduced paragraph breaks, particu-
larly after displayed equations? Are there abbreviations, and have you properly handled
their periods? Are authors’ initials tied correctly? Is all the mathematics—including
lone numerals—safely ensconced in math mode? Are footnote markers placed correctly,
and the footnote text visible at the bottom of the page?

In mathematics, have you enclosed subscripts and superscripts in braces? Are the
fractions properly displayed? Have you used commands for named functions? If there
are integrals, have you added a thin space before the differential? Have you used \left
and \right delimiters around complicated mathematical expressions?

Remember: You’re aiming for a simple, flexible, semantic representation of the page,
not a visual facsimile. The final presentation will be fine-tuned during post-processing.
The more you rely on meaningful commands—and the more consistent your work is
with that of others on the project—the easier a time the F2er and PPer will have.

6

http://www.pgdp.net/wiki/LaTeX_formatting_workflow
http://www.pgdp.net/wiki/LaTeX_formatting_workflow

With experience you’ll develop a feel for acceptable and unacceptable discrepancies
between your compiled output and the page scan, but do ask if you’re unsure. In time,
these checks will become second-nature, as will the entry of all that LATEX code.

When, at long last, you’re satisfied with your test-compiled output, copy the LATEX
code for the current page (being sure to omit any preamble or \begin{document} and
\end{document} lines) back into the proofing interface and save it. Congratulations,
and welcome to the addictive world of LATEX typesetting!

2 Guidelines

If, while formatting, you encounter an issue not covered in these guidelines, or are
otherwise uncertain how to handle something, please post your question in the project
discussion thread. It’s helpful if you provide a link to the scanned page image. In
the unlikely event you’re unable to resolve the issue, put a note in the proofread text
explaining the problem. Your note will explain to the next formatter or post-processor
what the problem or question is.

The semantic generalities of the ordinary DP formatting guidelines apply to LATEX
projects, and are not repeated here. Instead, this section highlights the differences
between “ordinary” and LATEX formatting at DP.

There is no formal requirement, but your LATEX formatting experience will be more
pleasant if you’re familiar with the ordinary formatting guidelines, and are aware of
what to look for when formatting.

On the flip side, LATEX formatting differs from ordinary DP formatting in almost
every detail. Be sure not to apply ingrained habits from non-LATEX projects.

Command conventions Most LATEX tags are control sequences, strings of characters
following a backslash. In this manual, commands are printed in a fixed-width font:
\LaTeX.

Many commands perform some action on a piece of formatter-provided text, called a
(command) argument and enclosed in curly braces. For example, boldface is formatted
\textbf{boldface}. The string \textbf{} signifies a command named textbf
and accepting a single argument, which is enclosed in the braces.

A few common math commands accept two arguments, such as \frac{}{}, which
typesets a fraction. The working preamble will contain project-specific commands,
possibly accepting two or even three arguments; these are common for chapters, sections,
and special structures such as theorems. The order of arguments is always significant.

2.1 Formatting Text

Special Characters

Latin-1 encoding LATEX was written when ASCII input was the norm. Now, thanks
to the inputenc package, characters from extended character sets can be digested as-is
by LATEX. Since DP uses the Latin-1 character set, proofread text should come with
accented letters and some symbols intact.

7

http://www.pgdp.net/c/faq/document.php

Do not convert Latin-1 characters to LATEX commands. The inputenc package will
automatically handle most of them correctly.3 Retaining the proofers’ Latin-1 text
makes the source file easier to read and reduces the likelihood of introducing errors.

On a Macintosh, you must set the document encoding to Latin-1 in your text editor
while working on DP files. In TEXShop, go to “Preferences” and set “Encoding” to
“Western (ISO Latin 1)”. Neglecting to do so may have no visible effects as you edit,
but could cause you to submit garbage instead of working code when you check the
page back in.

Special characters The punctuation characters #, %, $, and & have special meanings
in LATEX. As a formatter you will never need the special meaning of #, but the other
three are common:

% The comment character; causes LATEX to ignore everything from the character to
the end of the line.

$ The “math mode” delimiter; used to surround small snippets of mathematics, such
as y = x2 or

√
α (coded $y = xˆ{2}$ and $\sqrt{\alpha}$, respectively).

& The alignment stop; used in aligned constructs to delimit columns.

An omitted $ or & usually has dramatic visual consequences when the page is com-
piled. If the compiled output suddenly goes haywire in the middle of a line or displayed
equation, inspect the output to find the approximate location in the file where the
trouble starts, and look for a missing character. TeXnicCenter, TeXShop, and emacs
provide syntax highlighting, which helps avoid this type of error.

In text, special characters must by preceded by a backslash. “The 30% Solution,
printed by Gutenberg & sons, $0.75” is formatted

The 30\% Solution, printed by Gutenberg \& sons, \$0.75.
A few other common characters have meanings distinctive to LATEX. Curly braces

“group” code, telling LATEX to treat several characters as a single unit, as in x10 (coded
x_{10}). Use \{ and \} to get printed braces. The underscore and caret signify
subscripts and superscripts, just as in non-LATEX projects. The tilde character represents
a non-breaking space, and is discussed at length below.

Comments Just as in a non-LATEX project, you may need to leave in-line notes for the
PPer. The working preamble provides the \DPnote{} command. Place the text of your
note (or of any proofer notes) in the macro argument. Longer or traditionally-formatted
notes can be left by commenging out the text of the %[** Note].

Unless the project comments specify otherwise, minor typographical errors should be
corrected in-line. Use, for example, \DPtypo{txet}{text} to indicate a misspelling.
The first argument is the verbatim text from the page scan. The second argument is
the corrected text. Any accompanying notes must be \DPnoted separately.

As a general matter, please ensure that every note you leave for the PPer contains
the string “**”, or is in a \DPnote{} command, or both.

3If the mid-dot (·) is typeset as ∆, post in the project forum. The project’s formatting coordinator
neglected to handle the character in the working preamble.

8

Dashes Four types of “dash-like” punctuation occur in LATEX projects: hyphens, en-
dashes, em-dashes, and minus signs. All are made with one or more dash characters,
and the method differs from ordinary projects.

As in non-LATEX projects, hyphens are made with a single dash, and the proofers
should have rejoined words broken across lines in the scan.

Ranges of numbers, as in “pp. 24–27”, are denoted with a clothed en-dash, made
with two consecutive dash characters. Em-dashes—used to set off clauses—are created
with three consecutive dashes. If a project contains a dash longer than this, add an
em-dash and leave a note for the PPer. A consecutive string of four or more dashes is
never acceptable.

Minus signs are made with a single dash character in “math mode”: $y = -xˆ{2}$
gives y = −x2. Watch for mis-scanned and mis-proofed dashes, particularly in projects
with dirty scans. An en-dash (–) and a minus sign (−) are about the same length, but
neither semantically nor syntactically equivalent.

Non-breaking spaces LATEX ordinarily breaks paragraphs into lines with great skill,
and normally recognizes ends of sentences and adjusts the inter-word space accordingly.
In a handful of situations, however, LATEX needs human assistance. These low-key
adjustments are easily forgotten, overlooked, and/or mis-handled, but unfortunately
also fairly common.

Ideally, an author’s initials and title, such as “P. D. Q. Bach” or “M. Butterfly”,
should not become separated from the last name by a line break (which may, in unlucky
cases, be a page break). The tilde character ~, or tie, acts as a non-breaking space,
forbidding LATEX from ending a line there. As a rule, tie a single initial to the last
name, and tie multiple initials to each other but not to the last name: C.~F. Gauss,
P.~D.~Q. Bach, M.~Butterfly.

� Caution: The tilde character is a space character. Do not leave any additional space
characters adjacent to a non-breaking space, and do not place a tilde at the end of a
line. Doing so would both add unwanted space and allow LATEX to break the line next
to the tie.

Inter-word spaces LATEX puts more space at the end of a sentence than it does
between words. When a space or newline character follows a period, LATEX uses a
simple rule to decide whether a sentence has just ended: If the last character before the
period was not a capital letter, the period ends a sentence. Sometimes this assumption
is incorrect, in which case you must explicitly inform LATEX.

Most commonly, LATEX’s guess fails because a period is part of an abbreviation. You,
the formatter, must do one of two things. If a line break would be undesirable after the
period, place a tie immediately after. This happens surprisingly often, see Vol. XLII of
the DP LATEX formatting guidelines, particularly Fig. 4 on p. 789:4

Vol.~XLII of ... guidelines, particularly Fig.~4 on p.~789

4As you may have noticed, facetiously inaccurate, yet wryly self-referential, remarks are not unusual
in LATEX documentation. While these Guidelines do not actually have 42 volumes, there is a serious
lesson: Watch for abbreviations followed by an associated number, and tie them.

9

On the other hand, if a line break after the period would be fine, simply “escape”
the following space with a backslash. This is also not unusual, see e.g. the 10 lb. 12 oz.
appendix to the Guidelines :

see e.g.\ the 10~lb.\ 12~oz.\ appendix

Finally, LATEX assumes a period following a capital letter marks an abbreviation,
not the end of a sentence. When the sentence really does end there, the period must
be preceded by \@. This looks awful, but is thankfully rare. Only in the U.S. Q.E.D.
End of story.

Only in the U.S\@. Q.E.D\@. End of story.

Font Changes

Typesetters use different fonts and font sizes to signify information to the reader. A few
of the most common semantic structures are discussed in the next item. This subsection
handles the mechanics of changing fonts.

Just as in non-LATEX projects, individual words, phrases, and whole blocks of text
may be printed in a special font: italicized, boldface, Small Caps, g e s p e r r t, and
so forth. To the extent possible, you should strive to format such text according to its
meaning rather than its appearance, using features of the project preamble.

Achieving consistent semantic markup may require communication between you and
your fellow formatters, the project manager, and the post-processor (if any). Please
read the project comments and project forum before starting to format, and watch for
updates in the forum.

When the font size changes, the project preamble will normally contain a semantic
command that effects the size change, such as a Theorem or Remark environment.
Otherwise, ask in the forum or leave a note, such as %[** smaller], for the PPer.
Generally, it’s enough to leave one note per page, but use your judgement as to what
information would be most helpful. Similarly, gesperrt words should be handled with a
project-specific macro. If none is provided, ask in the project forum.

Special fonts inside semantic units (such as italicized theorem text and boldface
sectional headings) should be handled with a dedicated environment. Do not hard-code
such font changes.

For book titles, single words representing defined terms, and other short snippets of
italics, boldface, or small caps, hard-coding the font is normally acceptable. The com-
mands \textit{}, \emph{}, \textbf{}, and \textsc{} accept one argument—
placed inside the braces, and possibly spanning multiple lines—and render that argu-
ment italic, emphasized (“relatively” italic), bold, or small caps.

The “site convention” is to use \emph for terms being defined, and \textit for
other italicized text, including foreign phrases and book titles.

� Caution: Projects containing “i.e.”, “e. g.”, and the like always provide macros: \ie,
\eg, etc. Never hard-code the font or the spacing between characters.

� Caution: Never use the plain TEX font commands \it, \em, \bf, and \sc. Their
syntax differs from that of their LATEX analogs, and their behavior is not equivalent.

10

Illustrations, Lists, Footnotes, etc.

Front and back matter Unless the project comments say otherwise, much of books’
front and back matter needn’t be handled by formatters; the post-processor will format
these according to the requirements of the project. In a typical project, ignorable
elements include the title and copyright pages, and the table of contents. Retain the
proofed text, but comment it out:

\iffalse
[Text of page]

\fi

If both the text and the image are blank, leave a note % [Blank Page]
The project comments should say how to handle the index (if the project has one).

Generally, mark any changes of font, comment out the text as above, and use inden-
tations by two or four spaces to signify subitems just as in DP’s non-LATEX guidelines.
Check carefully for I/l/1 scannos. Do not add \item commands.

Illustrations and thoughtbreaks Format these as in non-LATEX projects, but com-
ment your note: % [Illustration: <text of caption>] or % <tb>. If cap-
tions are printed in a special font you needn’t note this, but please do format individual
caption words if they’re in a special font. See Font changes above for instructions on
setting text in italics, boldface, or small caps.

Internal references If you encounter a page number that refers to the book itself,
not to a citation to another work, (“see p. 42”), add a %[** page] note at the end
of the line. Unless the project comments say otherwise, wrap references to equation
numbers in \Eq{}: “. . . by equation \Eq{(42)}.”

The need to mark other cross references depends on how much hyperlinking the
PPer will do, and on how typographically regular the book’s cross references are. Ref-
erences associated with a § symbol can be found easily in PP, as can phrases such as
“Theorem V”, “Fig. 6”, and “Ch. 7” when the original book uses such conventions con-
sistently. By contrast, it’s helpful to note references such as “Theorems 6 and 7”, or
“Ch. IV” when most references are spelled out as “Chapter II”. For such cases, leave
a %[** xref] note at the end of a line. If several instances occur on a page, one
%[** xrefs] note is fine. There’s no harm in over-noting references, but it’s also not
important to note every single instance when references have the same form.

Block quotes Unles the project comments say otherwise, use LATEX’s built-in quote
environment: Surround the quoted text with \begin{quote} and \end{quote},
leaving a blank line before and/or after as needed to give paragraph breaks. Do not
match changes of font size or inter-line spacing (which the PPer will handle), but do
watch for isolated words requiring special formatting.

Numbered lists LATEX’s itemize environment is used at DP to handle all list-like
structures. The item number or tag is hard-coded as an optional argument (i.e. enclosed
in square braces), as in \item[42.]. Do not use LATEX’s auto-numbering.

11

http://www.pgdp.net/c/faq/document.php#illust

Not all numbered sequences are lists; ordinary paragraphs may be perfectly appro-
priate. Lists are indented from the left margin, and there is usually extra vertical space
between successive items. In case of doubt, ask.

Footnotes Footnotes in LATEX are placed in line, at the location of the footnote
marker in the text. LATEX’s \footnote{} command creates a footnote, automatically
generating the number or marker and setting the footnote text (the command argument)
in the proper location. When you test-compile your page, the footnote marker is likely
to be wrong. All will be fixed in PP.

Because of DP’s proofing practices, formatting footnotes in LATEX requires a mod-
icum of care: You must cut the footnote text from the page bottom, discard the existing
footnote marker, and paste the text inside a \footnote{} command elsewhere on the
page. Be sure not to lose any of the footnote text, and take care to paste the footnote
text at the correct location.

The proper technique is to put a newline after the \footnote command, and to
indent the footnote text two spaces, namely,

to let the author ramble on.\footnote
{This is the [several lines omitted] footnote text.}

The next sentence resumes here.

This convention introduces line breaks not present in the proofed text (an exception to
the “preserve line breaks” rule), but results in easier-to-read source code.

Footnote markers sometimes appear within section titles, mathematical displays,
and other typographical locations frowned upon nowadays. To handle such situations,
you need to use separate commands for the footnote marker and footnote text. First,
place a \footnotemark command at the location of the footnote marker. Then,
outside the section title or displayed equation, put the footnote text inside the argument
of a \footnotetext{} command.

y = xˆ{2}.\footnotemark
\] % This ends a displayed equation
\footnotetext{Heh. The mark looks just like an exponent.}%
The next sentence resumes here.

� Caution: Note carefully the comment character after the closing brace. If this is
omitted, an inter-word space will be placed after the footnotetext. In the \footnote
example that was no problem, because the footnote came just before an inter-word
space. Here, however, a space will cause unwanted indentation of the next line. This
problem is easy to miss in PP, so please try to avoid it.

Sections and Theorems

Sectional divisions Chapters, sections, and other sectional units should be marked
using commands from the working preamble, not standard LATEX commands. Typical
usage is something like this:

12

In the Beginning -> \Section{In the Beginning}

Chapter 2: After -> \Chapter{2: After}

For regularity, place two blank lines before the title of a sectional unit.
It’s fine if the test-compiled output of \Chapter, \Section, and other sectioning

commands does not exactly match the original. Do not attempt to match the visual
formatting by adding font commands or spacing.

Theorems and other semantic structures Mathematical texts frequently contain
paragraphs typeset in a special font (usually italics), with a numbered heading (often
boldface or small caps). When a particular type of structure, such as a theorem, exam-
ple, problem, remark, or definition occurs repeatedly in a project, the working preamble
will contain corresponding macros or environments. For example,

§ 123. Theorem xiv: A red ball is a red ball if and only if it is a ball and
it is red.

might be marked up like this:

\Paragraph{§ 123.} \begin{Theorem}[XIV]
A \emph{red ball} is...red.
\end{Theorem}

The project comments should explain how to code similar structures, but (as always)
please ask in the project’s discussion thread if you’re unsure how to handle something.

2.2 Formatting Mathematics

LATEX’s distinctive strength is mathematical typesetting, and most (if not all) DP
projects formatted in LATEX contain a lot of mathematics. While LATEX text formatting
has quirks all its own, mathematical typesetting is where the Real Fun begins.

Like musical notation, mathematics is not exactly line-centric in the same way as
ordinary text. The relative placement of symbols carries meaning, allowing enormous
compression of information. Aesthetics and the desire for visual consistency impose
subtle, arcane conventions on typeset mathematics. Compare:

/b
| f’(x)dx = f(b)-f(a)
/a

Sb
af ’(x)dx = f(b)-f(a)

∫ b

a

f ′(x) dx = f(b)− f(a)

Each may be serviceable, but only the third is beautiful. Over the course of a book,
merely serviceable typesetting becomes tiresome to read, even an impediment to the
reader’s concentration and understanding.

The third equation works so much better than the other two for a variety of reasons.
The fonts and symbols have similar, flowing shapes. The equality relation and binary
operator have the same size, and the surrounding space is uniform. Conceptually dis-
tinct entities—the integral sign, the integrand f ′(x), and the differential dx—are subtly
grouped, reinforcing their distinct but intertwined roles. And yet, LATEX typeset this
equation from simple, human-readable code:

13

\int {a}ˆ{b} f'(x)\, dx = f(b) - f(a)

The only explicit “hint” is the thin space \, before the dx.
You need not appreciate the fine points of mathematical typography in order to

format, but will likely develop an awareness of such subtleties as the depth of your
experience increases.

In-Line Math

In-line math is placed within math mode, enclosed by single dollar signs $. LATEX
ignores whitespace within math mode, so longer expressions may be formatted, even
broken across several lines, to improve readability of the code.

� Caution: Though italicized letters and mathematical variables look superficially sim-
ilar, compare “x” and “x”, they should be carefully distinguished in markup: Neither
the semantics nor visual appearance of text italics (2a+3b=y, different) and math italics
(2a+ 3b = y, different) are interchangeable.

Roman and Greek letters Roman variables are entered using the appropriate char-
acters. Lowercase Greek letters are obtained with commands: a backslash, and the
name of the letter spelled out. Capitalize the command name (\Alpha to \Omega) for
a capital letter, see Table 1. (Greek capitals having identical appearance to a Roman
capital do not in fact have LATEX commands. If you need such a letter, ask in the project
forum; a plain Roman letter may be fine.) Use a space if necessary to separate the name

A α B β Γ γ ∆ δ E ε (ε) Z ζ
\alpha \beta \gamma \delta \epsilon \zeta

H η Θ θ (ϑ) I ι K κ (κ) Λ λ M µ
\eta \theta \iota \kappa \lambda \mu
N ν Ξ ξ O o Π π ($) P ρ (%) Σ σ (ς)
\nu \xi \omicron \pi \rho \sigma
T τ Υ υ Φ φ (ϕ) X χ Ψ ψ Ω ω
\tau \upsilon \phi \chi \psi \omega

Table 1: Greek letters.

of a Greek letter from the surrounding expression; πr2 is formatted $\pi rˆ{2}$

� Caution: Seven Greek letters have lowercase variants (in parentheses). The “ordinary”
form will be seen when you test-compile, and should normally be used even if the scan
looks more like the variant. In very rare cases a book may use both forms of a letter
with different meanings. In this case only, precede the letter’s name with “var” (e.g.
\vartheta or \varphi) to obtain the variant letterform.

� Caution: As with italics, letters and symbols work differently in text and math mode.
Compare 2+2=4 (text mode) and 2 + 2 = 4 (math mode). Greek letters, Roman
variables and arithmetic signs must be placed in math mode.5 Unless the project

5However, LATEX will complain only if Greek letters appear outside math mode.

14

comments or the PPer say otherwise, do not worry about matching upright letters used
as variables.

� Caution: Numerals in a project may have mathematical meanings (constants and ex-
ponents) or non-mathematical meanings (chapter, section, and page numbers, for ex-
ample). In some fonts, numerals in math mode behave differently than in text mode.
Take care to place numbers in math mode or not, as appropriate.

Subscripts and superscripts A subscript is obtained with an underscore character
followed by the text of the subscript enclosed in curly braces. Superscripts are en-
tirely analogous, but use a caret instead of an underscore. Nowadays, subscripts and
superscripts should be correctly and fully handled by the proofing rounds.

Occasionally, a subscript or superscript will itself have sub- or superscripts. In this
event, treat the entire subscript or superscript as an expression:

z24 xn+1 xn + 1 x2
1 xnk

zˆ{24} x_{n+1} xˆ{n} + 1 x_{1}ˆ{2} x_{n_{k}}

Resolving proofer code Much of the raw text described above will have been entered
and checked during the proofing rounds, but it doesn’t hurt to verify existing code one
more time. Further, you must place mathematics in math mode, and may have to
disambiguate multi-character subscripts and superscripts with curly braces.

Your remaining responsibilities for mathematics are conceptually simple: Type in or
otherwise format anything left incomplete by the proofers. A pair of dollar signs ($$)
is a DP convention signifying a LATEX-specific symbol or expression the proofers didn’t
handle. Every instance of $$ must be handled explicitly by you, either replaced with
LATEX code (almost every case) or noted for the PPer.

Watch for fractions. In books of DP’s era, fractions were often set upright (1
2
)

instead of slanted (1/2). However, the proofers are instructed to render fractions on a
single line, with a slash denoting division. All instances of fractions should be resolved;
detailed instructions appear below.

A Brief Command Miscellany

Most in-line math involves LATEX commands, mnemonic control sequences for which
you’ll need a separate printed reference and plenty of practice. Dozens of these com-
mands appear regularly, but you’ll learn them surprisingly quickly.

One-character symbols One-character arithmetic signs have the expected meaning
when you use the project preamble. These include plus (+), minus (−), times (× or ·),
division (÷), equals (=), less-than (<), greater-than (>), and plus-or-minus (±).

The “times”, “division”, and “plus-or-minus” characters, and the degree sign ◦, may
be found in the Latin-1 drop-down (or “pop-up”) menu of the formatting interface.
They’re not ASCII characters, but can and should be left in place if present. It is
common for proofers to use \dd to denote the partial derivative symbol ∂.

Frequently-encountered LATEX symbol macros include “less than or equal” (≤, \leq),
“greater than or equal” (≥, \geq), “square root” (

√
, \sqrt{}, whose argument is

placed in the braces), “nth root” (n
√

, \sqrt[n]{}), and “infinity” (∞, \infty).

15

A few commands, such as \sqrt{}, accept an “optional argument”, such as the n in
\sqrt[n]{}. An optional argument is placed in square brackets, and generally causes
a command to perform a variant of its normal function.

Fractions Fractions are typeset with the \frac{}{} command, which takes as ar-
guments the numerator and denominator (top and bottom), respectively, as in x

y
,

\frac{x}{y}. LATEX adjusts the typeset size of fractions automatically according to
context, either “text style” for in-line occurrences or “display style” (see below).

� Caution: When you format a page containing fractions, check to be sure each instance
is properly sized when the page is compiled. If LATEX’s default size does not match the
scan, you may use the commands \tfrac{}{} (text fraction) and \dfrac{}{} (display
fraction) to size a fraction explicitly. If LATEX’s judgement is correct, use \frac{}{}.

Named operators Named functions, appearing as Roman type in math mode, are
obtained with identically-named commands. The trigonometric identity

cosx+ y = cosx cos y − sinx sin y

should be formatted $\cos x + y = \cos x \cos y - \sin x \sin y$, for
example. Over a dozen such commands are provided, including the trig and hyperbolic
functions, logarithms, and determinant.

Some books use older or variant functions not predefined in LATEX, such as “cosec”,
“arccot”, and “arccosec”. The working preamble should supply any necessary operators.
If a command is missing, please post in the project discussion.

� Caution: Always use semantic commands for named functions. They ensure the oper-
ators are typeset in the proper font and are surrounded by appropriate spacing.

Limit-like operators A few operators accept optional “subscripts”: \max and \min
(maximum and minimum), \sup and \inf (supremum and infimum), and \limsup
and \liminf (limes superior and inferior). In displayed math, subscripts on these
operators are underset: max

0≤x≤1
x(1− x) = inf

0<x
(x+ 1

2
)2.

Sums and integrals The commands for sums and integrals are \sum and \int.
Lower and upper limits are specified as sub- and superscripts. Both are “large” opera-
tors, and like fractions and limits, their appearance is adjusted by LATEX according to
context. By way of illustration, the code

\lim_{b\to 1} \int_{0}ˆ{b} eˆ{xˆ{2}}\, dx
= \sum_{k=0}ˆ\infty \frac{1}{(2k+1) k!}

gives dramatically different output in text and display style, respectively:

limb→1

∫ b

0
ex2

dx =
∑∞

k=0
1

(2k+1)k!
or lim

b→1

∫ b

0

ex2

dx =
∞∑

k=0

1

(2k + 1)k!

Rarely, a limit or sum appears in-line, but the subscript is placed underneath, as
if in display math. (See “Limit-like operators”, above.) This effect is achieved with

16

the command \limits, which is placed between the \lim or \sum command and the
subscript, as in \lim\limits {0\leq x\leq 1}. . .

� Caution: The Greek letter Sigma (Σ) must never be used to denote a sum (
∑

), despite
superficial similarity of appearance. The summation sign behaves correctly with limits
of summation, in both text and display, while Sigma doesn’t.

Displayed Math

“Displayed” math refers to any typographical construct—such as an expression, equa-
tion, or group of equations—set off from the main body of the text. Ordinarily the
typesetter displays material too complicated to print clearly in text, so on the average
displayed math is more challenging to format than in-line math.∫ 1/2

0

e−t2 dt =
∞∑

k=0

(−1)k

k!

∫ 1/2

0

t2k dt(42)

=
∞∑

k=0

(−1)k

k! (2k + 1)22k+1
=

1

2
− 1

3 · 23
+

1

2! 5 · 25
− . . .

Everything said above about in-line math holds for displayed math as well. This sections
covers a few salient additional details.

While in-line math is surrounded by dollar signs, displayed math is delimited by a
pair of commands: \[and \]. It’s good practice to put these commands on their own
lines in the source file; visually, this “sets off” the equation code from the text:

...power series
\[
\exp(x) = \sum_{k=0}ˆ\infty \frac{xˆk}{x!}.
\]

� Caution: Take care never to leave a blank line before a math display (since this could
result in a page break just before a displayed equation), and to leave a blank line
immediately after a display if, and only if, the next sentence begins a new paragraph.
Extra and missing blank lines around displayed equations are easily overlooked, and a
common mistake in formatted code.

Large delimiters Large parentheses, square brackets, and curly braces arise regularly
in displayed math. Preceding a delimiter character with \left or \right, as appro-
priate, causes LATEX to make the symbol tall enough to enclose the material between
the delimiters. The sizing is imperfect, but fine for the formatting rounds.

� Caution: Large delimiters in a displayed equation must occur in left-right pairs. Some-
times, however, an equation (including a single line of an aligned group) contains only
one delimiter. This happens for two common reasons: (i) a large curly brace groups
two or more equations, or (ii) a single delimited expression is broken across multiple
lines. For such situations, LATEX provides left- and right null delimiters, obtained with
a period: \left\{ [equation code] \right.

17

Equation numbers Displayed equations may have an “equation number” (see equa-
tion (42) above), usually at the left or right margin, enclosed in parentheses, and used
to refer to the equation elsewhere.

Although LATEX can generate equation numbers automatically, this feature is un-
suitable for use at DP.6 Instead, hard-code equation numbers by wrapping a \Tag{}
command around the proofed equation number, including the parentheses. This DP-
specific command minimizes changes to the proofer text, and (unlike the standard AMS
\tag command) handles math-mode tags and can be trivially used in post-processing
to create link anchors.

Unless the project comments say otherwise, wrap in-line references to equation num-
bers in an \Eq{} command. The \Eq{} command can be trivially turned into a hyper-
link in post-processing.

Don’t worry about capturing the typography of the equation numbers (such as
indentation and font).7

Miscellaneous Fine Points

Text in math mode The \text macro is used for ordinary text while in math mode,
usually in display mode:

aij = 0 for i 6= j

would be coded a_{ij} = 0 \quad\text{for}\quad i \neq j (as a displayed
equation). Sometimes text occurs in-line, but it would be semantically awkward to exit
math mode. In such cases, it may be necessary to nest bits of math inside a \text com-
mand: {even integers x} would be coded $\{\text{even integers˜$x$}\}$.
Here, “even integers x” forms a logical unit, so the code above is preferable to the
visually similar alternative “$\{\text{even integers } x\}$”.

Spaces in math mode To zeroth order, “spaces do not matter in math mode”.
However, spaces deserve consideration, even in math. For example, a space or other
non-letter must be used to delimit a macro name; πx is coded “\pi x”, not “\pix”.

More subtly, packages such as icomma turn punctuation into “active characters”,
effectively macros. If the icomma package is in use, “$10,000$” and “$10, 000$”
are typographically distinct. For uniformity, it’s therefore desirable to handle spaces
consistently in all projects. The first-order rule is “do not leave a space after a decimal-
separating comma”: “$10,000$” is correct for DP work.

For spaces in algebraic expressions, there are principles of mathematical legibility
but no hard-and-fast rules. Generally, prefer spaces around binary operators and rela-
tions (equality, less-than, etc.), after named operators, and between “large” multiplied
expressions, particularly if there are no parentheses delimiting the factors. Omit spaces
between single-character factors in a product except to delimit macro names. Thus:

ab + cd a(x + y) 2 \frac{x}{y} (a + b)ˆ{2} \frac{c}{d}

In borderline cases, imagine yourself reading the source file for mathematical meaning.

6Automatic numbering is most useful when the document structure changes regularly, as when
writing a book. At DP, by contrast, the document numbering is set in stone.

7You guessed it: These issues will be fixed in post-processing.

18

Consecutive math snippets Sometimes an author will concatenate mathematical
phrases, as in “if x > 2, x2 > 4” or “ai, i = 1, . . . , n”. (Omitting the linking words
“then” or “for” is arguably not good expository style, but at DP we don’t edit the
author’s words.)

When you encounter this sort of construct, put each “phrase” in its own math mode:

if $x > 2$, $xˆ{2} > 4$ a_{i}, $1 = 1, \dots, n$

There are three reasons: space characters in text give ordinary inter-word space, while
in math mode they’re ignored; LATEX can break a line at an inter-word space; and
“separate” markup better captures the grammar. In extreme cases, you may need to
understand the mathematics in order to code it properly; don’t hesitate to ask in the
project discussion.

2.3 Aligned Material

This section briefly introduces aligned constructs, lying toward the more challenging end
of the LATEX formatting spectrum: tabulars and arrays, and the AMS environments for
displayed math.

Arrays LATEX provides environments for rectangularly-arranged data: tabular for
textual data and array for numerical data. These environments are generically termed
“arrays” below. A complete explanation of LATEX’s alignment capabilities is beyond the
scope of this short manual. Don’t hesitate to ask for help and feedback on your first
efforts, or even to skip pages containing rectangular alignments.

Generally, less is more in array formatting. As needed, the project preamble will
contain macros tailored to the project. These are designed to be wrapped around
pieces of the proofer text where possible. Concentrate on marking data and column
headings correctly. Normally each array “cell” should contain one semantic unit, such
as a decimal number, mathematical expression, or textual heading. Leave detailed
alignment, spacing, and other visual tweaks to the post-processor.

If the printed original contains entries set on multiple lines, code the text in one cell,
not in multiple rows. (A simple array is shown below, side-by-side with its formatted
text. Note the markup of the second column heading, which uses a project-specific
\ColHead macro.) Because OCR software and the proofing rounds leave text in its
printed position, multi-line headings require careful rearrangement of the proofer text.

Environment
Data
type

tabular text
array math

\begin{tabular}{|l|c|}
\hline
Environment & \ColHead{Data type} \\
\hline\hline
tabular & text \\
\hline
array & math \\
\hline
\end{tabular}

19

A tabular or array environment starts with an alignment preamble, a special
argument (here, {|l|c|}) specifying the number of columns and how to align their
entries: l for left, r for right, c for centered, and a few more advanced possibilities. The
“pipe” character | signifies a column separator, a vertical line running the height of the
structure. Separators do not count as columns; the example above has two columns,
one left-aligned, the other centered. Separators may be omitted from the alignment
preamble (as in {|lc|} if they are not desired. Consecutive pipes (||) may be used
to get a separator consisting of closely-spaced vertical lines.

Data rows consist of multiple entries, one for each column, separated by &, the
alignment stop. (Recall that the ampersand is a special character in LATEX.) Each data
row ends with the special command \\. (This command takes an optional argument that
explicitly specifies vertical space; leave this sort of adjustment to the post-processor.)

Alignment stops appear only between columns, not at the beginning or end of the
row; since the example has two columns, each row contains only one alignment stop.
One or more entries of a data row may be omitted, with the obvious effect.

The special command \hline draws a horizontal line the width of the structure.
An \hline command is not followed by a \\. Consecutive \hline commands may be
used with the indicated effect. The command (e.g.) \cline[2-7] draws a horizontal
line spanning columns 2 through 7 (assuming the array has at least seven columns).

� Caution: In the formatting rounds, don’t explicitly adjust column or row spacing,
even if the test-compiled result looks ugly. It’s easiest if such changes are made globally
in PP.

� Caution: If a project contains decimal-aligned numerical data, the project preamble
will contain a special column type and instructions for handling it. Do not use double
rl-aligned columns for the integer and decimal parts of data.

Multi-column cells The command \multicolumn{2}{c}{Spud} centers the text
“Spud” over two columns. The first argument specifies the number of columns to span.
The second argument may be c, l, or r (and may also include one or more pipes) for
centered, left-aligned, or right-aligned material. If a book requires many such entries,
the project preamble will contain one or more special macros that can be wrapped
around the proofer text, e.g., \TwoCol{Spud}.

The command (e.g.) \hdotsfor{5} creates a row of dots spanning five columns of
an array. It’s fine if the dot spacing doesn’t match the original.

The AMS Math Environments

Aligned displays Collections of displayed equations are usually centered as a group,
or else aligned on their equals signs to highlight parallel structure or to show the progress
of a calculation. Of all mathematical structures, complex displays require the most care
and experience to format well, and when formatted correctly they’re relatively likely
not to mimic the page scan. This section is caution-heavy, to help ensure you’re not
wasting your time attacking difficult problems with plausible but poor techniques.

At DP, aligned displays are formatted using AMS environments, mostly gather*,
align*, alignat*, and multline*. For detailed information, consult the AMS

20

http://www.ams.org/tex/amslatex.html

Short Math Guide, which is linked from the DP wiki LATEX resources page. Aa always,
ask in the project discussion for feedback.

“Typical” aligned groups might look like this:

y1(t) = c1 cosωt+ c2 sinωt,

y2(t) = −c1 sinωt+ c2 cosωt.

v = k1x1 + . . .+ knxn,

v = l1x1 + . . .+ lnxn,

. .

w = m1x1 + . . .+mnxn,

\begin{align*}%[** Attn alignment]
y_{1}(t) &= c_{1}\cos \omega t + c_{2}\sin \omega t, \\
y_{2}(t) &= -c_{1}\sin \omega t + c_{2}\cos \omega t.

\end{align*}

The ampersands just to the left of the equals signs delimit columns, alternately aligned
flush right and flush left, signifying points in each equation to line up.8 The code shown
above does not perfectly duplicate the alignment shown in the typeset snippet, but final
visual polishing is best noted (as indicated) and left to the PPer.

The second may be coded using align*, but can also be fine-tuned with alignat*:

\begin{alignat*}{3}
v &= k_{1} x_{1} &&+ \dots &&+ k_{n} x_{n}, \\
v &= l_{1} x_{1} &&+ \dots &&+ l_{n} x_{n}, \\
\multispan{8}{\dotfill} \\
w &= m_{1} x_{1} &&+ \dots &&+ m_{n} x_{n},

\end{alignat*}

Nested environments The nestable aligned and gathered environments are
used to align or center parts of a complex mathematical display:

(a+ b)2 + (a− b)2

= (a2 + 2ab+ b2) + (a2 − 2ab+ b2)

= 2(a2 + b2)

(42)

{
x = sin θ,

y = sin 2θ.

\begin{multline*}
(a + b)ˆ{2} + (a - b)ˆ{2} \\

\begin{aligned}
&= (aˆ{2} + 2ab + bˆ{2})
+ (aˆ{2} - 2ab + bˆ{2}) \\

&= 2(aˆ{2} + bˆ{2})
\end{aligned}

\end{multline*}

\[
\Tag{(42)}
\left\{
\begin{gathered}
x = \sin \theta, \\
y = \sin 2\theta.
\end{gathered}
\right.
\]

Using an aligned environment inside a multline* environment captures the
semantics, and as a fringe benefit adjusts flexibly if the text block width changes.
(Manually picking an alignment point in the first line does neither.)

8A row with two equation groups needs three alignment stops. Generally, a row containing n equa-
tion groups requires (2n− 1) stops.

21

http://www.pgdp.net/wiki/LaTeX_resources

Aligned displays get considerably more complex than this. Don’t hesitate to ask an
expert for help! Ironically, “simple” math (such as long division) is notoriously thorny
to format.

� Caution: Never use LATEX’s array or tabular environments to format groups of
displayed equations. Marking an aligned equation as if it were a table row does not
work semantically or visually. Never use LATEX’s obsolete eqnarray environment.

� Caution: Flexible formatting adjusts itself automatically to the width of the text block.
By contrast, plain visual formatting leads to brittle code, in which small changes of
style parameters badly break the appearance. If you’re spending a lot of time adding
delicately-chosen explicit spaces, you’re writing brittle code. Please stop and ask for
help immediately. ¨̂

Condensed Intertext

Many projects of DP’s era contain “condensed intertext”, where text and aligned equa-
tions are placed on the same line, usually to save vertical space on the page.

The PPer has two general strategies: to “discard” or “retain”. If the PPer is dis-
carding condensed intertext (the more common option), format the text and equations
as if they were set on different lines in the original. If the PPer is retaining (i.e., match-
ing the original), use DPalign* and DPgather*, custom environments created by
User: dcwilson. Do not use the standard AMS flalign environment.

Discarding condensed intertext Use ordinary equations or AMS environments:
Define

x =
2t

t2 + 1

and

y =
t2 − 1

t2 + 1
.

Define
\[
x = \frac{2t}{tˆ{2} + 1}
\]
and
\[
y = \frac{tˆ{2} - 1}{tˆ{2} + 1}.
\]

Retaining condensed intertext Use DPalign* and DPgather*. Note the ex-
plicit \indent required to mark the start of a paragraph.

Define x =
2t

t2 + 1

and y =
t2 − 1

t2 + 1
.

\begin{DPgather*}
\lintertext{\indent Define}
x = \frac{2t}{tˆ{2} + 1} \\
\lintertext{and}
y = \frac{tˆ{2} - 1}{tˆ{2} + 1}.
\end{DPgather*}

In all your LATEX formatting at DP, remember to focus on semantics rather than raw
appearance, keep your code simple and easy-to-read (future document maintainers are
unlikely to speak LATEX), and ask for advice or assistance if you’re uncertain. Welcome
to the community, and Happy LATEXing!

22

http://www.pgdp.net/wiki/User:Dcwilson/DPalign

	Contents
	Overview
	The DP Process
	For New LaTeXers

	Guidelines
	Formatting Text
	Formatting Mathematics
	Aligned Material

