
Securing GNU/Linux

A Brief Introductory Guide (V. 1.1)

c©2003, Andrew D. Hwang, ahwang@mathcs.holycross.edu

1 Introduction

GNU/Linux is a free (libre) clone of Unix, written from scratch by a world-
wide group of volunteers. It is a powerful, flexible operating system in-
creasingly used by individuals. Conversely, it is a sophisticated platform for
launching attacks, and is sufficiently capable of networking to be exploitable
remotely. This note is a brief guide to you, the new user/system admin-
istrator, who is charged with securing your machine against attack. The
advice here is specifically geared toward RedHat and Mandrake, two of the
most common distributions of GNU/Linux, but is generally applicable to all
operating systems, and is (in particular) easily modified for Debian-based
systems.

1.1 Terms of Usage

The information in this document is accurate and current to the best of the
author’s knowledge. This document may be freely copied and distributed in
any form, so long as this copyright license remains intact in its entirety.

This document comes with ABSOLUTELY NO WARRANTY, in-
cluding but not limited to all implied warranties of merchantability and fit-
ness for a particular purpose; in no event shall the author be liable for any
special, indirect, or consequential damages whatsoever resulting from loss of
use, data, or profits, whether in an action of contract, negligence, or other
tortious action, arising from or in connection with the use of this document.

1



2 Network Services

The focus of this note is network security, which addresses the ways an in-
truder can break into and control your machine simply by virtue of your
machine being connected to a network. If your machine is not networked,
this note is of no practical use to you.

2.1 Clients and Servers

The client-server model is a common computer networking paradigm. The
idea is that one entity, the server, provides a resource, such as access to a
printer or monitor, web pages, a database, email forwarding, or login ac-
cess. If you are accustomed to single-user operating systems (MacOS 9 or
Windows 98, for example), you are probably not used to thinking of your
computer as a server. However, even those operating systems allow file shar-
ing, making the computer into a file-sharing server.

The other participant is the client, an entity that wishes to use a re-
source provided by a server. The following are typical client tasks: Sending
a print job, displaying the output of a program that runs on another ma-
chine, browsing the world-wide web, sending email, or logging on to another
machine.

In many organizations, ordinary users’ machines are clients for most ser-
vices, while servers run on powerful computers in locked rooms, maintained
by a separate IT group. Because of this, users often refer to “the server”
as if there were a single monolithic oracle to which ordinary users’ requests
are directed. The reality is not quite that simple: Each service (printing,
email, web serving, login) has both a server and a client (or multiple clients,
since usually several people use a single service). However, a server is not a
computer, but a program running on some computer. Similarly, a client is
a program; familiar examples include email readers, web browsers, file man-
agers, and streaming media players. Note that the same machine may be
a server and a client in multiple roles; a single machine may even be both

server and client for some tasks, such as printing or displaying the output
of graphical programs. If you have installed GNU/Linux, your machine is
acting as a server for perhaps a dozen services, some of which are offered
to the network by default; when you watch the messages that scroll up the
screen when your machine starts up, you may see lines such as “Starting
bind”, “Starting lpd”, and so forth. Each of these lines corresponds to a

2



service offered by your machine.

2.2 Networking Basics

Just as two people can communicate over long distance by telephone, two
computers can communicate (over a physical wire, or by radio) with special
hardware called a network card. The network card translates data internal
to the computer into electrical signals that can be transmitted.

Machines nowadays communicate largely with the Internet Protocol (IP),
a general-purpose, worldwide agreement on the meaning of the electrical
signals transmitted between two network cards. This data is sent in the form
of “packets”, groups of up to about 1500 bytes that are something like pages
of a postal letter.

The full story on networking is more complicated; hardware and IP are
just two of seven network layers. For present purposes these layers suffice, but
the transport layer (TCP and UDP) is of central importance in understanding
the details of networking, and must be considered when creating a firewall.

Addressing

Every network card is manufactured with a unique MAC (media access con-
trol) address, rather like the serial number on an engine block. The MAC
address is a globally unique identifier for a specific piece of network hardware.

Distant computers need not know each others’ MAC addresses to com-
municate. Instead, every computer on the Internet has a unique IP ad-

dress, 8 bytes (such as 192.133.83.197, with each number between 0 and
255) that function something like a postal address. By a system not un-
like that used by the post office, two machines with IP addresses can com-
municate regardless of their physical location, and without there being a
centralized “directory” of machines on the Internet. In addition, machines
can be referred to by more human-readable names, like www.google.com or
radius.holycross.edu. The “white pages lookup” that translates between
these fully-qualified domain names and IP addresses is a service, called name

resolution and provided by the domain name system (DNS).
As mentioned previously, a single computer may act as a server in several

capacities. When a packet arrives at a machine, how does the machine know
which server (program) should receive the packet’s data? The answer is that
a machine that communicates via IP has 65535 = 216 − 1 ports associated to

3



its IP address. These port numbers can be regarded as apartment numbers
on the street address (IP address). When a client sends data to a server, the
data is addressed to a specific port, whose number depends on the type of
service.

For most services, there is general agreement on which port numbers
are bound to which services. Under GNU/Linux, the file /etc/services

contains a list of recognized services and their port numbers. A few common
services are listed in Table 1. A browser connecting to the web server at
mathcs.holycross.edu sends packets to 192.133.83.197:80, for example.

Service ftp ssh smtp domain http https
Port 21 22 25 53 80 443

Table 1: A few common services and their port numbers.

2.3 Remote Attacks

In a benign world, a server would only be a liability because it consumes
system resources (memory and processor time). In reality, a server is poten-
tially a door by which an intruder can gain control of the machine running
the server. Remember that a server is a program that functions normally
by listening for requests that arrive from the network, then doing its best
to comply, within the limitations of its ability. An ordinary request to a
file server might ask for a file by name; the file server’s job is to look for
and return the appropriate file, or (if an error occurs) to generate an error
message.

The danger is that a server must accept input from an untrusted source
(the client), and it is not always the case that a server handles malformed
requests safely and cleanly. One type of attack, based on a common pro-
gramming mistake, is the buffer overflow exploit. For example, a program-
mer might write part of a file server to accept any filename that is at most
256 characters in length, which is more than enough for ordinary use. How-
ever, if more than 256 characters appear in the guise of a filename, the server
must decide what to do with the extra data. If all the incoming data is
written into the 256-byte box allocated by the programmer, it will be loaded
into memory somewhere that the program does not expect. What happens
next depends on the server binary, the operating system, and the skill of

4



the attacker who forged the bogus filename. Most likely the file server will
only crash, causing a denial of service (DoS). However, a skilled attacker
can sometimes force the server to run a useful command, such as starting a
shell (command prompt) on a specified port. Since the file server is likely
to be running as root, the login shell created by the attack will have root

privileges. The attacker, who may be anywhere in the world, now has total
remote control of the server machine.

While creating a buffer overflow exploit against a specific server requires
considerable skill, running one requires none at all. What usually happens
in the open source world is that someone discovers an exploitable flaw in
a particular server, fixes the bug, and publishes both the vulnerability and
the fix after notifying the vendor (if appropriate). The vendor publishes
a security advisory, which system administrators (such as yourself) are ex-
pected to read, and to act upon by updating their software. Unfortunately,
unpatched machines often remain on line for months or years after a vul-
nerability is published. Meanwhile, within a short time—sometimes within
days—a skilled programmer (properly called a “cracker”, not a “hacker”)
releases source code for an attack against the vulnerability, earning prestige
in the system cracker community. At that point, legions of unskilled but
maladjusted youths (properly called “vandals”) download and launch the at-
tack code, wreaking havoc on unpatched systems and bragging about their
expertise. Security experts call these people “script kiddies”.

Sometimes a cracker will write not merely an attack that can be launched
manually, but a worm, a self-propagating program that spreads to vulnerable
systems. A typical life cycle is this: The attacker starts the worm running on
a compromised machine. The worm scans the Internet, looking for machines
running the vulnerable server. When a remote attack succeeds, the newly-
compromised machine is forced to download and compile the worm’s source
code, then to launch a new copy of the worm. A well-written worm will also
clean up the compromised system so that it is extremely difficult to detect
that an attack took place. A large organization may discover an attack only
because a machine is responding slowly, or because it begins to attack other
machines in the company’s network.

5



3 Securing GNU/Linux

As the owner/administrator of a shiny new GNU/Linux box, you are prob-
ably sitting on a system cracker’s gold mine. Common distributions install
and enable numerous services by default, and some of them are notoriously
vulnerable to remote exploits. Five of the most commonly implicated ser-
vices are bind (DNS), ftp (file transfer protocol), lpd (line printer daemon),
rpc_statd (remote procedure call, for the Network File System, NFS), and
sendmail (email). If you are connecting your GNU/Linux box to the Inter-
net, it is essential that you secure your machine against attacks.

It is a cliché (and a truism) that security is a frame of mind, not a do-once
procedure or a program that you can run. There are habits to develop, but
a few concrete things can be done immediately after installation, before a
machine is connected to the Internet.

Commands below are shown with a root prompt, “root# ”. Do not type
the prompt when running a command.

3.1 Disabling Services

When GNU/Linux starts up, the system is initialized with shell scripts
that lie in the directory /etc/rc.d/init.d (RedHat-based) or /etc/init.d
(Debian-based). The instructions here assume a RedHat-based system.

The scripts mentioned above are not run directly, but through symbolic
links. These symlinks are found in directories named /etc/rc.d/rc[i].d,
in which [i] stands for an integer between 0 and 6, called the runlevel. The
file /etc/inittab contains information about runlevels. Most people start
in runlevel 5, which in RedHat presents a graphical login screen.

A symlink in a runlevel configuration directory is of the form S10network

or K09dm, in which “S” stands for “start”, “K” stands for “kill” (or stop), and
the number determines the order in which the script is run. The remainder
of the symlink’s name is the name of the service started or stopped when
the system enters or leaves the corresponding runlevel. The directory entries
in Table 2 would start the network, then the system logger, the general-
purpose mouse daemon (which enables highlighting, cut-and-pasting, etc.),
the random number generator (used for encryption), and so forth. Non-
standard user-specified configuration options are often put into a script called
rc.local, which is run last.

6



10network S20random S55xntpd S75keytable
S12syslog S20xfs S56xinetd S90crond
S15gpm S30dm S55sshd S99local

Table 2: Typical system configuration directory entries.

Most of the initialization scripts accept the four options start, stop,
status, and restart. To stop sendmail, do

root# /sbin/service sendmail stop

As always when running commands as root, it is prudent (though not nec-
essary) to type the complete path. If your distribution does not have the
service command, the script can be run manually:

root# /etc/rc.d/init.d/sendmail stop

Stopping a running service does not ensure that the service will not be
started at the next reboot. For that, you must remove the symlinks corre-
sponding to services that you do not need. These symlinks could be managed
by hand, but it is far easier (and less error-prone) to use the chkconfig util-
ity. Examination of the actual initialization scripts should reveal a line such
as “chkconfig: 2345 60 60” near the top of the script file. This line sig-
nifies that the script (say cups, the Common Unix Printing System) should
be started and stopped in runlevels 2–5 inclusive, at order 60. To remove the
symlinks that start cups automatically, do

root# /sbin/chkconfig --del cups

Use the --add option to add the relevant symlinks.
Removing the symlinks for a service ensures that the service is not started

automatically at the next reboot. It does not stop the service if it is already
running. If you are systematically disabling services, first stop the service,
then remove the symlinks.

There has been a recent tendency for desktop managers (Gnome and KDE)
to run numerous services. Be sure not to disable these by mistake or your
desktop session will start to misbehave. You should be able to determine
what an initialization script does by reading the script; if that fails, try
looking for a manual page.

7



3.2 Firewalls

Services that must run can be protected from attack with a firewall, which
is a program that examines incoming IP packets and accepts or rejects them
according to criteria such as the port they are addressed to, the address they
came from, whether or not they are part of an established connection, and
so forth. Linux provides firewalling capabilities through iptables (2.4 and
later kernels) or ipchains (2.2 kernel), which must be built into the kernel.
Stock kernels have firewalling capability, but you must write and activate a
rule set. The specifics of iptables are not covered here; instead, this note
concentrates on the structure of a typical firewall, and the sorts of decisions
you must make to write good firewall rule sets.

There are two general styles of granting permissions in computer secu-
rity: “Everything not expressly forbidden is permitted”, and “Everything
not expressly permitted is forbidden”. Note carefully that these are very dif-
ferent policies, because of the way they handle contingencies that have not
been foreseen. When writing a firewall rule set, it is usually best to forbid
everything not expressly permitted.

The Linux kernel’s firewall code uses the concept of “chains”, each of
which is a gauntlet that a packet must traverse. The most obvious chain is
the INPUT chain, which handles incoming IP packets. Like all firewall chains,
the INPUT chain has a default policy, such as ACCEPT or DENY. If a packet
successfully runs the gauntlet, it will have the default policy applied to it.
As mentioned above, the default policy of the INPUT chain should be DENY.

In the Linux firewall code, packets are tested against the rules in a chain
successively, and the first match wins. Firewall rules should be used to DENY

access to ports on which services like lpd are running, unless you want the
whole world to have access to those services (your printer, in this case). Even
if you leave a port exposed, you can restrict the IP addresses that have access;
for instance, you might run an ssh (secure shell, an encrypted login program)
server, but only allow login attempts from machines within the network run
by your school or company.

A useful feature of firewalls is their ability to log events, such as unautho-
rized attempts to connect to a blocked port. Further details on configuring a
firewall can be found in the “Firewall and Proxy Server HOWTO” document,
available (along with dozens of other useful HOWTOs) at no cost from the
Linux Documentation Project:

http://www.tldp.org/

8



Almost every aspect of system administration is discussed in detail by at
least one HOWTO.

To get a feel for the amount of potentially malicious traffic, you need only
configure your firewall to log all packets where the “SYN flag” is set; such
packets represent attempts by another computer to initiate a connection to a
service on your computer using TCP (transmission control protocol). Unless
you are behind a firewall already, expect to be scanned several times a minute,
regardless of the time of day. Not all such packets are signs of an attack, but
many of them are the equivalent of a burglar casing a neighborhood, seeing
which houses are easy to break into.

3.3 Passwords

A password is a token that a user supplies in order to be granted access to a
service, usually login. A good password is not an actual word in any human
language, is at least 8 characters in length, and contains letters, digits, and
punctuation. There is an art to choosing passwords, since the password
should not be so difficult to type or remember that it must be written down,
but not so obvious that anyone could guess it. The reason to avoid words
is that if someone is able to obtain a copy of your encrypted password file
(not as difficult as it sounds), they will run a dictionary attack, successively
encrypting dictionary words and looking for a match among your encrypted
passwords. For this reason, foreign words do not make acceptable passwords.
Other tricks, such as replacing “s” with “5” or “i” with “1” are only a small
improvement over dictionary words, but are better than nothing.

It is generally a good idea not to allow root to log on remotely. Instead,
log on as an ordinary user, then use su (substitute user) to become root. You
should also avoid using ftp and telnet to connect to your machine; both
programs send unencrypted passwords, making it trivial to steal them. By
default, ssh uses 1024-bit encryption, which is currently considered strong
enough for military and diplomatic use.

3.4 Security Lists

In addition to the measures outlined above, you should regularly visit security-
related sites, at which vulnerabilities are announced weekly, grouped by ven-
dor. Your vendor also releases vulnerabilities as they are discovered, along

9



with patched packages; find out where to locate these announcements on the
web, and/or subscribe to your vendor’s security mailing list.

4 Summary

It pays to be reasonably paranoid when security is an issue, but it is equally
crucial not to be overwhelmed by the prospect. Administering a GNU/Linux
machine is an art that requires continual study, and security is an ongo-
ing process. Happily, a great deal can be done just once to secure your
GNU/Linux system. Disabling unneeded (and possibly dangerous) services
and setting up a firewall are excellent first steps toward securing a system,
and should be done immediately after installation, before connecting the ma-
chine to the Internet.

4.1 Further Reading

The resources below go into far more depth about security-related issues.
Perhaps the biggest security-related site is

http://www.linuxsecurity.com/

Vendors’ announcements of vulnerabilities are generally made here, as well
as on vendors’ web sites.

The Honeynet Project,

http://project.honeynet.org/

is devoted to the study of system and network vulnerabilities “in the wild”.
Lance Spitzner has a number of excellent, detailed white papers on security
that can be found here.

Dave Dittrich has written articles on “rootkits”, the software an attacker
installs on a machine once a successful attack has been run. A machine that
has been “rootkitted” will lie cunningly to you, the administrator, about it’s
having been compromised. His web site contains a wealth of high-quality
information:

http://staff.washington.edu/dittrich/

10


