
Figure Design and Drawing Tips with ePiX

1 Overview

LATEX has a relatively simple picture environment permitting line figures to be drawn. Ex-
ternal packages such as eepic, PSTricks, and tikz substantially expand the picture envi-
ronment’s capabilities. ePiX adds layers of abstraction, providing a 3-dimensional “world”,
camera, and Cartesian 2-dimensional drawing region with page layout capabilities; high-level
commands for common objects such as shapes, coordinate axes, and function graphs; and
the programming capabilities of C++, including variables, loops, recursion, control structures,
extensible data types, and numerics.

ePiX is not a graphical drawing program, but instead is more akin to script-based lan-
guages such as Asymptote, MetaPost, or gnuplot. An ePiX input file contains human-
readable instructions for describing a scene, just as a LATEX file contains markup instructions
for typesetting a document. The techniques, tricks, and work flow of figure creation are
distinctive, and completely different from those used with xfig, dia, inkscape, or similar pro-
grams. Particularly, you compose documents in a text editor according to logical structure,
not by visual appearance in a graphical window.

1.1 Why Use ePiX?

Many drawing needs are served perfectly well by a point-and-click interface. However, logical
structuring permits flexibility and mathematical accuracy while maintaining image quality:
fonts matching the document; lines of accurate color, width, and placement; logical relation-
ships expressed in objects’ definitions; robustness under changes of scale and aspect ratio.

The programmability of ePiX allows you to write figures depending on a small number
of constants, whose relationships are encoded by the input file. When one or more constants
vary, the entire figure will change smoothly and trivially, as if controlled by mechanical
linkages. Noticing these logical relationships within a figure and using them to advantage
when writing is a basic skill distinctive to script-driven structured figure design.

1.2 Logical Design

As a quick example, fleshed out below, consider illustrating the classical calculus exercise of
finding the point on the parabola y = x2 closest to a specified point (a, 0) on the horizontal
axis. To draw the minimizing solution in a point-and-click interface, you’d draw a parabola
(or spline approximation), the coordinate axes, and the point (a, 0). Next, you’d visually
locate the point (x, y) on the parabola at which the tangent line is normal to the segment
joining (a, 0) to (x, y), and draw the normal and tangent lines (or something close enough).
Finally, you’d label selected elements in the figure. Parts of the drawing may be inconvenient
to arrange, but all can be done acceptably. The screen version may differ from the hard copy,
but if the qualitative point is made, you may well feel the result was “good enough”. If the
initial choice of figure size requires tweaking, you may be in for a moderately tedious edit,
or may decide the change isn’t worth the trouble. The author has had similar experiences,
and the regrettable quality of some published figures suggests he is not alone.

In ePiX, the initial design ignores considerations of appearance in favor of logical rela-
tionships. First, create a variable to hold the value a. Second, define a function accepting a
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numerical x and returning the point (x, x2) on the parabola. These data determine the fig-
ure; everything else will be computed. The cubic equation in x defining the minimizer (x, y)
is easily expressed in terms of a. The real root must be found, so define the appropriate
cubic function; ePiX can evaluate the root numerically to perfect visual precision. Finally,
add drawing commands to the input file, one for the parabola, one for each coordinate axis,
one each for the tangent and normal lines, and one for each label. There’s no guesswork
here, though the labels require a bit of practice to position correctly on the first try. Now
compile and preview the figure to see if it “works” aesthetically. If not, the value of a, the
size, aspect ratio, line widths, font, colors, etc. can be changed easily in the input file and
trivially recompiled into a vector graphic. At the end of the process, we have a LATEX picture
drawn with mathematical precision according to visual criteria.

a

y = x2

(x, y)

y = x2

(x, y)

a

Figure 1: A GUI drawing (left) versus ePiX

Superficially, the results are similar, and in this case took roughly comparable amounts
of time to produce. LATEX code had to be added to the labels in the GUI version, and the
point of tangency is slightly off due to the author’s unsteady hand and inexpensive mouse.
More importantly, however, the ePiX figure is flexible: It can be resized, redrawn with a
different value of a, or colored with trivial effort. A bit of polishing yields a finished figure.

y = x2

(x, y)

a

2 Simple Planar Drawing

To draw a figure, you need either a rough sketch (hand- or machine-drawn) or a good mental
picture of your final image. The author usually employs a mental sketch, and a single ePiX

file as both rough draft and finished product. A figure containing irregularly-shaped curves
should be physically sketched in advance; see Section 4. The overall process is seldom a
linear path from blank canvas to complete figure; there are bound to be tentative choices
refined as more details get filled in.
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2.1 The Preliminary Sketch

True and Virtual Dimensions

The skeleton code inserted by emacs into a new ePiX file cannot be compiled as is because
the size of the figure has not been specified. At the very least, you must give the true
(printed) size of the figure and the bounding box or virtual size, the corners of the Cartesian
rectangle in which drawing takes place.

The true size is given by a “size string” such as "5 x 3in", a double-quoted string
containing a number and an optional LATEX length unit, an x (optionally surrounded by
spaces), another number and a mandatory length unit. The bounding box should be given
by its lower left (southwest) and upper right (northeast) corners. The command

picture(P(a,c), P(b,d), "2in x 6cm");

sets the bounding box to [a, b] × [c, d], and draws the figure 2 in. high and 6 cm wide.
(Internally, 2 in. is converted to cm.)

For previewing, you may wish to set the true dimensions larger than the desired size.
Dimensions are easy to change so there’s no harm setting them approximately and refining
the choice later. In 2-dimensional scenes, the choice of bounding box is generally apparent,
while bounding a 3-dimensional scene accurately tends to require visual adjustment.

Roughing and Completing the Drawing

An active previewer such as gv will be helpful from here on. Add basic elements to the file,
compile to encapsulated PostScript (regardless of the final format to be produced), and open
the eps file in gv. Now you can add commands to the input file, compile from emacs, and
have the result update in the previewer window. This set-up gives the visual feedback of a
GUI environment but retains the precise control furnished by the programming language.

2.2 Layering

Consider a plot of the cosine function; to illustrate branches of the inverse, we’d like to
emphasize the “principle branch” part of the graph. The hand drawing might look like:

−π −π
2

0 π
2

π 3π
2

2π

−1

1

The bounding box is clearly [−π, 2π] × [−1, 1], but the true size will be dictated by typo-
graphical as much as mathematical concerns. If we settle on “true aspect ratio”, the width
determines the height (or vice versa). For the moment, we’ll make the figure 1 in. high and
therefore 1.5π in. wide. (The author strongly prefers to draw at true aspect ratio. Commer-
cial software sometimes “intelligently” chooses figure dimensions, distorting mathematical
truth in the process. ePiX allows you to draw visual fibs, but requires you to ask explicitly.)

The dimensions may be specified in two equivalent ways:
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picture(P(-M_PI,-1), P(2*M_PI,1), "4.7124 x 1in");

or

bounding_box(P(-M_PI,-1), P(2*M_PI,1));

picture(3*M_PI, 2);

unitlength("0.5in");

Generally the first form is preferable, but in the present situation the second may be more
convenient, as it does not require a numerical value for 1.5π. Adding this content to an
emacs template creates a compilable, though still empty, input file.

In the present example, we need commands for the axes, a command for the entire graph,
and a separate command for the emphasized piece of plot.

axis Ax(P(-M_PI,0), P(2*M_PI,0), 6, P(0,-4), b);

Ax.trig().draw();

axis Ay(P(0,-1), P(0,1), 1, P(-4,0), l);

Ay.draw();

plot(Cos, xmin(), xmax(), 120);

bbold();

plot(Cos, 0, M_PI, 40);
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This is the rough sketch.
Substantial defects are apparent: axis labels colliding with the vertical axis or the graph.

Labels can be “masked”, printed over a solid white rectangle to hide portions of the figure
underneath the text. To repair the overlapping curves and labels, we’ll manually order scene
elements. Closer inspection reveals a circular annoyance: The vertical axis underlies the
horizontal axis labels, which underlie the graph,1 which underlies the vertical axis labels.
Bother. However, ePiX allows an axis and its labels to be drawn separately. Thus, we can
resolve collisions by first drawing the vertical axis without labels, the horizontal axis with
masked labels, the cosine graph, the vertical axis labels, and the open circle markers, in this
order.

It’s slightly more efficient, though not strictly necessary, to draw the cosine graph in
three pieces rather than two. The complete input file now looks like this:

/* -*-ePiX-*- */

#include "epix.h"

using namespace ePiX;

1As an exercise, draw the horizontal axis with masked labels last.
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int main()

{

picture(P(-M_PI,-1), P(2*M_PI,1), "4.7124 x 1in");

begin();

label_mask(White()); // set mask color

axis Ay(P(0,-1), P(0,1), 1, P(-4,0), l);

Ay.draw_ticks(); // draw axis, ticks only

axis Ax(P(-M_PI,0), P(2*M_PI,0), 6, P(0,-6), b);

Ax.trig().draw(); // labeled axis

plot(Cos, xmin(), 0, 40); // leftmost third

Ay.draw_labels(); // and the vertical axis labels

bbold();

plot(Cos, 0, M_PI, 40); // middle third, heavy line

plain();

plot(Cos, M_PI, xmax(), 40); // right third

circ(P(0,1)); // open interval markers

circ(P(M_PI,-1));

end();

}

This file compiles, naturally, to the “hand-drawn” version on page 3.
Collisions between axis labels and other parts of the picture make this example a bit

more involved than a typical function plot. When collisions occur and cannot be fixed by
moving labels slightly, the rough version requires manual layering. However, since layers are
easily rearranged by reordering lines in the input file, final polishing is no more difficult than
the layering techniques required to achieve the same effect in a GUI program.

3 Tricks for Discontinuous Functions

Discontinuous functions defined by formulas (especially in calculus courses) require an as-
sortment of (reasonably intuitive) tricks to be plotted well.

3.1 Removable Discontinuities

There’s no difficulty to plotting a function with a removable discontinuity; place a plain circ

marker on the graph, and a dot at the value. To handle more complicated examples, such
as Thomae’s “denominator” function, use a loop to position points on the graph.

/* -*-ePiX-*- */

#include "epix.h"
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using namespace ePiX;

int N(30); // maximum denominator plotted

int main()

{

picture(P(-2,0), P(2,1), "4x1in");

begin();

axis Ax(P(-2,0), P(2,0), 8, P(0,-6), b);

Ax.subdivide(6).frac().draw();

v_axis(2);

for (int i=1; i< N; ++i)

for (int j=i*xmin(); j <= i*xmax(); ++j)

if (gcd(i, j) == 1)

dot(P(j*1.0/i, 1.0/i));

end();

}

−2 −3
2

−1 −1
2

0 1
2

1 3
2

2

3.2 Poles

Normally ePiX plots by drawing a simple connect-the-dots path. If the plotted function is
undefined at a sample point, the adjacent intervals are not drawn. Thus, if a function has
a pole (infinite discontinuity), the plot interval and number of samples should be chosen so
the pole is sampled, not missed. When plotting a function with poles, cropping should be
activated. The number of points may require visual adjustment; use as few points as possible
to get a visually pleasing plot. (An up-to-date LATEX distribution should be able to handle
many thousands of points.)

/* -*-ePiX-*- */

#include "epix.h"

using namespace ePiX;

double f(double x)

{

return 1.0/((x-1)*x*(x+0.5));

6



}

int main()

{

// strong vertical compression

picture(P(-2,-20), P(2,20), "4 x 1in");

begin();

h_axis(4);

v_axis(4);

label(P(xmin(), ymax()), P(2,-2),

"$y=\\frac{1}{x(x-1)(x+1/2)}$", br);

set_crop();

bold();

plot(f, xmin(), xmax(), 120); // multiple of 8

end();

}

y = 1
x(x−1)(x+1/2)

3.3 Jump Discontinuities

“Piecewise” functions may be defined with if-then decision statements. To avoid (nearly)
vertical segments bridging the discontinuities, use one plot command for each continuous
piece, and place appropriate markers at the “breaks”.

/* -*-ePiX-*- */

#include "epix.h"

using namespace ePiX;

double f(double x)

{

if (x<1) return (1-x)*(1+x);

else if (x<3) return 1.5 - 0.5*x;

else return 0.5;

}

int main()

{
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picture(P(0,0), P(4,1), "4 x 1in");

begin();

h_axis(4);

v_axis(1);

bold();

plot(f, 0, 0.999, 20); // plot on [0,1)

dot(P(1, f(1)));

plot(f, 1, 2.999, 1); // linear!

dot(P(3, f(3)));

plot(f, 3, 4, 1); // plot on [0,1)

plain();

circ(P(1, f(0.999)));

circ(P(3, f(2.999)));

end();

}

3.4 Wild Discontinuities

Infinitely oscillatory graphs, such as y = cos 1
πx

, test the mettle of any plotting software.
Approaching such a plot naively may yield acceptable output, but usually requires far more
than a minimal number of sample points. Generally, break the graph into pieces of small
curvature, and/or plot over intervals on which the function is monotone.

/* -*-ePiX-*- */

#include "epix.h"

using namespace ePiX;

double f(double x)

{

return Cos(1.0/(M_PI*x));

}

int main()

{

// fibbed aspect ratio

picture(P(-2,-1), P(2,1), "4 x 1in");

begin();
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h_axis(8);

for (int i=1; i<40; ++i)

{

plot(f, 1.0/(i+1), 1.0/i, 20);

plot(f, -1.0/i, -1.0/(i+1), 20);

}

plot(f, 1, xmax(), 40);

plot(f, xmin(), -1.0, 40);

bbold();

line(P(0,-1), P(0,1));

end();

}

4 Matching a Hand Drawing

In topology or complex analysis, one frequently wishes to draw plane curves lacking a simple
parametric description. Such curves can be drawn using splines. The technique below was
used to re-create the scanned image (left) from a book on complex analysis as a vector
drawing (right).

A

A′

B

B′

C

C′

D

D′

P0

P1

T0

ePiX provides quadratic and cubic splines, given by three or four control points p0, . . . ,
p3. Each type of spline passes through the initial and final points. At each end, the curve is
tangent to the segment from the end point to its neighboring control point:

p0

p1

p2 p0

p1

p2

p3
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Approximating a hand-drawn curve therefore amounts to selecting appropriate control points
on the curve and adjusting the remaining control point(s) for each spline segment. For the
“horseshoe” contour above, each arc between a pair of labeled points is a spline segment.

The first step is to overlay a square grid on the picture being rendered, either using ePiX

(if an electronic image is available) or a sheet of graph paper. Open a new ePiX file, and
create points using coordinates read off from the drawing. It’s a good idea to name these
points systematically, say p0,. . . , pk reading along the curve.

To ensure the eventual curve is smooth (has continuous tangents), the control points of
adjacent arcs must be chosen compatibly. To this end, define velocity vectors v0,. . . , vk,
one for each point on the curve, and let ePiX compute the control points. At each control
point pi, place a ruler tangent to the curve, estimate the slope, and let vi be a direction
vector for the tangent line. Be sure to choose these direction vectors compatibly along the
path. (It’s often helpful, though not necessary, to choose vectors of length close to unity.)

Now you’re ready to lay out a first approximation. If the curve is to be filled or otherwise
manipulated as a whole, create a path object; otherwise simply invoke the spline function
once for each arc.

path bd(p0, p0 + v0, p1 - v1, p1);

bd += path(p1, p1 + v1, p2 - v2, p2);

bd += path(p2, p2 + v2, p3 - v3, p3); // etc

Close and fill the path as needed, and compile the resulting figure.
Chances are the first approximation doesn’t adequately resemble the hand drawing. To

remedy this, multiply the velocities by suitable constants and recompile. It’s enough to
adjust the curve arc by arc. After adjustment, the curve might look like this:

path bd(p0, p0 + 0.75*v0, p1 - 1.25*v1, p1);

bd += path(p1, p1 + 0.5*v1, p2 - v2, p2); // etc

If you’re not intuitively familiar with the way splines depend on their control points, it’s
worthwhile to experiment.

5 Three-Dimensional Figures

All ePiX figures are implicitly 3-dimensional. The camera projects orthogonally onto the
(x, y)-plane, providing ordinary 2-dimensional Cartesian drawing. Add a line such as

camera.at(P(10,8,6));

to an input file and recompile; the result will be the original figure viewed from a point in
the first orthant.

y = x2

(x, y)
a
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A naively converted 2-dimensional figure will not be of high quality. Certain elements,
primarily axis ticks and labels, are likely not to appear as they would if you viewed a
2-dimensional printout from the camera’s spatial location. Further, the bounding box is
probably incorrect, perhaps badly so. Naturally, a 3-dimensional figure should be composed
from the start with the camera close to its eventual location.

For 2-dimensional scenes, you must distinguish page coordinates (the true size) from
Cartesian coordinates (the bounding box). Spatial scenes introduce yet another coordinate
system—the 3-dimensional Cartesian coordinates of space, as well as a camera which per-
forms point projection from spatial to planar Cartesian coordinates.

5.1 The Bounding Box

The simplest, most reliable technique to set the bounding box of a 3-dimensional figure is
visual adjustment. With experience, you’ll be able to estimate where a scene will appear
when “photographed” from a given location. For fine-tuning, the command

border();

draws a thin black rectangle around the bounding box. The corners can then be adjusted to
achieve the desired fit, and the border removed.

y = x2

(x, y)
a

y = x2

(x, y)
a

5.2 Object Hiding

In ePiX, objects in a scene are drawn in the same order they appear in the input file. This
ordering is particularly significant for 3-dimensional scenes: Farther objects must be drawn
before nearer objects.

More sophisticated techniques are often necessary. Consider, for example, the problem
of graphing a function of two variables along with coordinate axes. Unless the axes, graph,
or both are broken into pieces, no ordering of scene elements is likely to be correct. Instead,
assuming the camera lies in the region where z > 0, one should plot the portion of the graph
“below” the (x, y)-plane (where z < 0), then the scene elements in the (x, y)-plane, and
finally the portion of the graph “above” the (x, y)-plane. ePiX’s clip box can be used to
chop scenery into pieces for ordering.

clip_box(P(-4,-4,-4), P(4,4,0)); // clip to z < 0

<drawing commands>

clip_box(); // restore default

<(x,y)-plane>

clip_box(P(-4,-4, 0), P(4,4,4)); // clip to z > 0

<drawing commands>
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Similar techniques can be used any time a scene is naturally cut by planes into pieces
whose correct ordering depends only on the location of an object with respect to the cutting
planes.

If the repeated drawing commands are fairly extensive, the sensible strategy is to collect
them into a void-valued function, and to call this function each time the clip box is reset.

5.3 Label Positioning

Most objects in a scene are described by their Cartesian position. A simple text label might
be given as

label(P(3,-2), "Right here");

This command puts the payload (“Right here”) into a LATEX box of zero size and places
this box at Cartesian location (3,−2). (More accurately, the point (3,−2) is “promoted”
to (3,−2, 0) and photographed. This screen location is used to position the text box.)

In practice this scheme doesn’t give the desired effect; a label goes near the object it
indicates, not on top of it. One’s first inclination might be to position the label visually in
Cartesian coordinates. A bit of experience shows the inadequacies of the approach: If the
viewpoint (camera location) or figure size change, the Cartesian location will not keep the
text aligned properly.

For these reasons, ePiX labels are positioned by Cartesian location, an offset, and an
alignment flag. Think of a label as a Cartesian location with a chunk of LATEX code attached.
The LATEX code has a base point, shown below as a dot. The offset shifts the base point
relative to the screen location by a specified amount in true pt. Finally, the alignment flag
(c for centered, l (ell) for left, tr for top right, etc.) moves the base point to a corner or
midpoint of the LATEX box. Label alignments in ePiX work opposite to the way they work
in LATEX; for example, tr places the label above and to the right of the location, namely
sets the base point to the lower left corner. Each figure below shows the square [0, 4]× [0, 4];
note how label offsets are unaffected by aspect ratio, and that a combination of alignment
and offset is required to place labels properly and conveniently.

label(P(2,3), P(0,6), ...)

label(P(2,2), P(0,0), ...)

label(P(2,1), P(-12,-4), ...)

label(P(2,3), P(0,0), ..., t)

label(P(2,2), P(0,0), ..., l)

label(P(2,1), P(0,0), ..., bl)

label(P(2,3), P(0,2), ..., t)

label(P(2,2), P(-4,0), ..., l)

label(P(2,1), P(-2,-2), ..., bl)
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