The Geometry of Surfaces of Revolution

Union College, November 13, 2002

Andrew D. Hwang
Dept. of Math and CS
College of the Holy Cross

Life in a plane: Fundamental objects are points and lines, basic geometric quantities are length (or distance) and angle, \sim area, congruence.

Less obvious property: Absolute parallelism.

Length and angle make sense in a spherical universe, but "parallelism" does not:

In a general surface, nearby points are joined by paths of shortest length (geodesics). Curvature is manifested as angular defect in small geodesic triangles (Gauss)

Excess angle \leftrightarrow positive curvature

Angle $\pi \leftrightarrow$ zero curvature

Deficient angle \leftrightarrow negative curvature

In vivo:

3
Curvature <0

A coordinate system is a way of turning geometry (reality) into algebra (mathematics)

(u, v) coordinates on a planar region. Geometry in these coordinates is encoded in length and angle of "infinitesimal coordinate vectors"

$$
\mathbf{x}_{u}=\frac{\partial}{\partial u}, \quad \mathbf{x}_{v}=\frac{\partial}{\partial v}
$$

Geometry of surface determined by the metric:
$E(t)=\left|\mathrm{x}_{t}\right|^{2}, G(t)=\left|\mathrm{x}_{\theta}\right|^{2}$
Rotational symmetry $\leftrightarrow E, G$ indep of θ

Arc length: $s=\int_{t_{1}}^{t_{2}} \sqrt{E(u)} d u$
Circumference: $2 \pi\left|\mathbf{x}_{\theta}\right|=2 \pi \sqrt{G(t)}$
Zonal area: $2 \pi \int_{t_{1}}^{t_{2}} \sqrt{E G(u)} d u$

Surface of revolution obtained by revolving a plane curve ("geometric profile") about an axis. Each point sweeps an "orbit".

Method I: Revolve a graph, e.g. $f(t)=\sqrt{1-t^{2}}$.
At position t on axis, circumference is $2 \pi f(t)$

Height-angle coordinates $(-1 \leq t \leq 1)$

$$
\begin{aligned}
& \quad(x, y, z)=\left(t, \sqrt{1-t^{2}} \cos \theta, \sqrt{1-t^{2}} \sin \theta\right) \\
& E(t)=1 / \sqrt{1-t^{2}}, G(t)=\sqrt{1-t^{2}}
\end{aligned}
$$

Method II: Revolve a parametric curve, e.g. $\mathbf{c}(\phi)=(\sin \phi, \cos \phi)=(t(\phi), r(\phi))$.

At parameter ϕ, position on the axis is $t(\phi)$, circumference is $2 \pi r(\phi)$

Geographic coordinates $\left(-\frac{\pi}{2} \leq \phi \leq \frac{\pi}{2}\right)$

$$
(x, y, z)=(\cos \phi \cos \theta, \cos \phi \sin \theta, \sin \phi)
$$

$E(\phi)=1, G(\phi)=|\cos \phi|$.

Generally, may choose the parameter ϕ to be arc length along the profile.

Mercator projection:

$(x, y, z)=\frac{1}{\sqrt{1+t^{2}}}(\cos \theta, \sin \theta, t)$

$$
E(t)=\frac{1}{1+t^{2}}=G(t)
$$

By changing the radial coordinate $t=t(r)$, we can make E and G satisfy conditions.

- Isothermal coordinates: If

$$
d r=\sqrt{\frac{G(t)}{E(t)}} d t
$$

then $E(r)=G(r)$.
Metric angles same as coordinate angles.

- Symplectic coordinates: If

$$
d r=\sqrt{E G(t)} d t
$$

then $E(r)=1 / G(r)$.
Metric area same as coordinate area.

Mercator coordinates: isothermal Height-angle coordinates: symplectic Plane Cartesian coordinates: both

Method III: (Reverse description) Fix an orbit, let $2 \pi \tau$ be area of zone, $2 \pi \sqrt{\varphi(\tau)}$ the corresponding circumference

Remarkable example (Archimedes): Zones of equal height on unit sphere have equal area, $\varphi(\tau)=1-\tau^{2}$

The Momentum Construction

Key observation: If φ is positive near 0 , there is a unique symplectic metric for which $G=\varphi$.

Define $t=\int_{0}^{\tau} \frac{d u}{\varphi(u)}$.
Pleasant calculus exercises:
τ is a radial coordinate, $E(\tau)=1 / \varphi(\tau)$.

Area of zone $0 \leq \tau: 2 \pi \tau$
Circumference of orbit: $2 \pi \sqrt{\varphi(\tau)}$
Distance function: $s(t)=\int_{0}^{\tau} \frac{d u}{\sqrt{\varphi(u)}}$

$$
\varphi(\tau)=1(\tau=t, \text { cylinder })
$$

$\varphi(\tau)=2 \tau\left(\tau=e^{2 t}\right.$, plane $)$

$$
s(t)=\int_{0}^{\tau} \frac{d u}{\sqrt{\varphi(u)}}=\int_{0}^{\tau} \frac{d u}{\sqrt{2 u}}=\sqrt{2 \tau}
$$

Note: $\pi s(t)^{2}=2 \pi \tau$

$$
\varphi(\tau)=1-\tau^{2}(\tau=\tanh t, \text { sphere })
$$

$$
s(t)=\int_{0}^{\tau} \frac{d u}{\sqrt{\varphi(u)}}=\int_{0}^{\tau} \frac{d u}{\sqrt{1-u^{2}}}=\arcsin \tau
$$

Radius of corresponding orbit: $\sqrt{\varphi(\tau)}=\cos s$

How to visualize the surface defined by φ ?

- Embeds iff $\left|\varphi^{\prime}\right| \leq 2$
- Closes up iff $\varphi=0$
- Cone angle is $\pi\left|\varphi^{\prime}\right|$
- Finite area iff τ bounded
- Finite length iff $\int_{0}^{\tau} \frac{d u}{\sqrt{\varphi(u)}}<\infty$

Weird examples:
$\varphi(\tau)=2 \tau+\tau^{3}, 0 \leq \tau$
$\varphi(\tau)=2 \tau /(1-\tau), 0 \leq \tau<1$
Area? Distance to edge? Length of orbits?

Is this description just a curiosity?

No: The (Gaussian) curvature is $\kappa=-\frac{1}{2} \varphi^{\prime \prime}(\tau)$, Gauss-Bonnet is the FTC

Constant curvature \leftrightarrow quadratic polynomial Affine functions:

Concave quadratics: $\varphi(\tau)=a^{2}-\tau^{2}$

Sphere is unique smooth, complete surface; Some admit geodesics of length $>\pi$

Convex quadratics: $\varphi(\tau)=a^{2}-2 \tau+\tau^{2}$

Pseudosphere has cusp end, $\varphi^{\prime}(0)=0$; All admit extensions, many smooth

