The Geometry of Surfaces of Revolution

Union College, November 13, 2002

Andrew D. Hwang Dept. of Math and CS College of the Holy Cross Life in a plane: Fundamental objects are points and lines, basic geometric quantities are length (or distance) and angle, \sim area, congruence.

Less obvious property: Absolute parallelism.

Length and angle make sense in a spherical universe, but "parallelism" does not:

In a general surface, nearby points are joined by paths of shortest length (*geodesics*). Curvature is manifested as angular defect in small geodesic triangles (Gauss)

Excess angle \leftrightarrow positive curvature

Angle $\pi \leftrightarrow \text{zero curvature}$

Deficient angle ↔ negative curvature

3

In vivo:

A coordinate system is a way of turning geometry (reality) into algebra (mathematics)

(u,v) coordinates on a planar region. Geometry in these coordinates is encoded in length and angle of "infinitesimal coordinate vectors"

$$\mathbf{x}_u = \frac{\partial}{\partial u}, \qquad \mathbf{x}_v = \frac{\partial}{\partial v}$$

Geometry of surface determined by the metric:

$$E(t) = |\mathbf{x}_t|^2$$
, $G(t) = |\mathbf{x}_{\theta}|^2$

Rotational symmetry \leftrightarrow E, G indep of θ

Arc length:
$$s = \int_{t_1}^{t_2} \sqrt{E(u)} \, du$$

Circumference:
$$2\pi |\mathbf{x}_{\theta}| = 2\pi \sqrt{G(t)}$$

Zonal area:
$$2\pi \int_{t_1}^{t_2} \sqrt{EG(u)} du$$

Surface of revolution obtained by revolving a plane curve ("geometric profile") about an axis. Each point sweeps an "orbit".

Method I: Revolve a graph, e.g. $f(t) = \sqrt{1 - t^2}$.

At position t on axis, circumference is $2\pi f(t)$

Height-angle coordinates $(-1 \le t \le 1)$

$$(x, y, z) = (t, \sqrt{1 - t^2} \cos \theta, \sqrt{1 - t^2} \sin \theta)$$

$$E(t) = 1/\sqrt{1-t^2}, G(t) = \sqrt{1-t^2}$$

Method II: Revolve a parametric curve, e.g. $c(\phi) = (\sin \phi, \cos \phi) = (t(\phi), r(\phi)).$

At parameter ϕ , position on the axis is $t(\phi)$, circumference is $2\pi r(\phi)$

Geographic coordinates $(-\frac{\pi}{2} \le \phi \le \frac{\pi}{2})$

$$(x, y, z) = (\cos \phi \cos \theta, \cos \phi \sin \theta, \sin \phi)$$

$$E(\phi) = 1, G(\phi) = |\cos \phi|.$$

Generally, may choose the parameter ϕ to be arc length along the profile.

Mercator projection:

$$(x, y, z) = \frac{1}{\sqrt{1 + t^2}} (\cos \theta, \sin \theta, t)$$

$$E(t) = \frac{1}{1 + t^2} = G(t)$$

By changing the radial coordinate t=t(r), we can make E and G satisfy conditions.

• Isothermal coordinates: If

$$dr = \sqrt{\frac{G(t)}{E(t)}} dt,$$

then E(r) = G(r).

Metric angles same as coordinate angles.

• Symplectic coordinates: If

$$dr = \sqrt{EG(t)} \, dt,$$

then E(r) = 1/G(r).

Metric area same as coordinate area.

Mercator coordinates: isothermal

Height-angle coordinates: symplectic

Plane Cartesian coordinates: both

Method III: (Reverse description) Fix an orbit, let $2\pi\tau$ be area of zone, $2\pi\sqrt{\varphi(\tau)}$ the corresponding circumference

Remarkable example (Archimedes): Zones of equal height on unit sphere have equal area, $\varphi(\tau)=1-\tau^2$

The Momentum Construction

Key observation: If φ is positive near 0, there is a unique symplectic metric for which $G = \varphi$.

Define
$$t = \int_0^\tau \frac{du}{\varphi(u)}$$
.

Pleasant calculus exercises:

 τ is a radial coordinate, $E(\tau) = 1/\varphi(\tau)$.

Area of zone $0 \le \tau$: $2\pi\tau$

Circumference of orbit: $2\pi\sqrt{\varphi(\tau)}$

Distance function:
$$s(t) = \int_0^\tau \frac{du}{\sqrt{\varphi(u)}}$$

$$\varphi(\tau) = 1 \ (\tau = t, \text{ cylinder})$$

$$\varphi(\tau) = 2\tau \ (\tau = e^{2t}, \text{ plane})$$

$$s(t) = \int_0^\tau \frac{du}{\sqrt{\varphi(u)}} = \int_0^\tau \frac{du}{\sqrt{2u}} = \sqrt{2\tau}$$

Note: $\pi s(t)^2 = 2\pi \tau$

$$\varphi(\tau) = 1 - \tau^2 \ (\tau = \tanh t, \text{ sphere})$$

$$s(t) = \int_0^\tau \frac{du}{\sqrt{\varphi(u)}} = \int_0^\tau \frac{du}{\sqrt{1 - u^2}} = \arcsin \tau$$

Radius of corresponding orbit: $\sqrt{\varphi(\tau)} = \cos s$

How to visualize the surface defined by φ ?

- Embeds iff $|\varphi'| \le 2$
- Closes up iff $\varphi = 0$
- Cone angle is $\pi |\varphi'|$
- Finite area iff τ bounded
- Finite length iff $\int_0^\tau \frac{du}{\sqrt{\varphi(u)}} < \infty$

Weird examples:

$$\varphi(\tau) = 2\tau + \tau^3$$
, $0 \le \tau$

$$\varphi(\tau) = 2\tau/(1-\tau), \ 0 \le \tau < 1$$

Area? Distance to edge? Length of orbits?

Is this description just a curiosity?

No: The (Gaussian) curvature is $\kappa = -\frac{1}{2}\varphi''(\tau)$, Gauss-Bonnet is the FTC

Constant curvature ↔ quadratic polynomial

Affine functions:

Concave quadratics: $\varphi(\tau) = a^2 - \tau^2$

Sphere is unique smooth, complete surface; Some admit geodesics of length $>\pi$

Convex quadratics: $\varphi(\tau) = a^2 - 2\tau + \tau^2$

Pseudosphere has cusp end, $\varphi'(0) = 0$; All admit extensions, many smooth