
ePiX Tutorial and

Reference Manual

Andrew D. Hwang

Department of Math and CS
College of the Holy Cross

Version 1.0, September, 2004

Contents

1 Introduction 3

1.1 Software Dependencies . 5
1.2 Installation . 6

2 Getting Started 9

2.1 Running ePiX . 9
2.2 A Sample File . 11
2.3 Basic Picture Concepts . 13
2.4 Logical Size, and Aspect Ratio 13
2.5 Creating and Drawing Objects 14
2.6 The Camera . 17
2.7 Drawing Attributes . 18
2.8 Typography . 20
2.9 C++ Basics . 22
2.10 High-Level Picture Elements 25
2.11 Basic Plotting . 28

3 Reference Manual 31

3.1 More About C++ . 31
3.2 The Camera . 39
3.3 Clipping and Cropping . 40
3.4 Attributes . 41
3.5 The Path Class . 43
3.6 Geometric Data Structures . 46
3.7 Domains and Plotting . 50
3.8 Non-Euclidean Geometry . 55
3.9 Animation . 56
3.10 Troubleshooting . 57

1

4 Advanced Topics 61

4.1 Hidden Object Removal . 61
4.2 Extensions . 63

A Software Freedom 67

B Acknowledgements 69

2

Chapter 1

Introduction

ePiX, a collection of batch-oriented utilities for *nix, creates mathematically
accurate line figures, plots, and movies using easy-to-learn syntax. LATEX and
dvips comprise the typographical rendering engine, while ImageMagick is
used to create bitmapped images and animations. The user interface resem-
bles that of LATEX itself: You prepare a short scene description in a text
editor, then “compile” the input file into a picture. Default output formats
are eepic (a plain text enhancement to the LATEX picture environment), eps,
pdf, png, and mng.

ePiX’s strengths include:

• Quality of output: ePiX creates mathematically accurate, publication-
quality figures whose appearance matches that of LATEX. Typography
may be put in a figure as easily as in an ordinary LATEX document.

• Ease of use: Figure objects and their attributes are specified by simple,
descriptive commands.

• Flexibility: In ePiX, an object is described by its attributes and Carte-
sian location; as in LATEX, printed appearance is determined when the
figure is compiled. A well-designed figure can be altered dramatically,
yet precisely, with minor changes to the input file.

• Power and extendability: ePiX inherits the power of C++ as a program-
ming language; variables, data structures, loops, and recursion can be
used to draw complicated plots and figures with just a few lines of
input. External code can be incorporated in an ePiX figure with a
command line option or by using a Makefile.

3

• Economy of storage and transmission: For a document containing many
figures, a compressed tar file of the LATEX sources and ePiX files is
typically a few percent the size of the compressed PostScript file.

• License: ePiX is Free Software. You are granted the right to use the
program for whatever purpose, and to inspect, modify, and re-distribute
the source code, so long as you do not restrict the rights of others to
do the same. In short, the license is similar to the terms under which
theorems are published.

The relationship of ePiX to a graphical drawing program is analogous to
the relationship between LATEX and a word processor; ePiX facilitates logi-
cal structuring of mathematical figures. Though ePiX makes a few stylistic
defaults to streamline the creation of simple figures, it imposes no internal
restrictions on the contents or appearance of a figure; aesthetic and practical
decisions are left to the user.

This manual is meant to be read in stages rather than “cover to cover”.
If you are a:

• Potential user, you may wish to skip immediately to “Software Depen-
dencies” before investing additional time.

• New user, please proceed from here until you have enough understand-
ing to play with the software, then experiment with the samples files
while reading Chapter 2, or return to the manual as needed.

• More advanced user, browse at will, probably starting with Chapter 3.

In any case, please don’t hesitate to contact the author or join the mailing
list if you have questions or comments (good or bad) about the software or
manual, or if you are willing and able to join in developmment.

Under the philosophy that people learn most easily when ideas are intro-
duced in context, this manual is relatively conversational, and occasionally
redundant (especially between portions meant for readers at different levels
of familiarity). Throughout, you are assumed to be familiar with LATEX and
basic linear algebra (the description of points, vectors, lines, and planes in
three-dimensional space). Other material, such as C++ syntax, is introduced
as needed.

4

1.1 Software Dependencies

If you run GNU/Linux, a BSD, or Solaris, you almost surely have (or can
install) all the external software needed to use ePiX. For Mac OS X, you
will need the Apple developer tools, and will want to install an X server and
the fink package manager to build a featureful *nix environment. Users of
other operating systems, most notably Windows, face a challenge in run-
ning ePiX, though not an insurmountable one. The author’s (second-hand)
Windows-specific knowledge is summarized below.

“Under the hood”, an input file is successively converted to eepic, dvi,
PostScript, pdf or eps, and if desired, png or mng. ePiX comprises a com-
piled library written in C++, a C++ header file, and four shell scripts—epix,
laps, elaps, and flix—that automate the various file format conversions.
Each script is written in GNU bash. Consequently, there are two absolute
necessities: a C++ compiler (preferably g++) and bash. The script epix uses
only these programs. ePiX is primarily a pre-processor for LATEX, but does
not absolutely require LATEX for normal use. However, without LATEX and
Ghostscript (particularly dvips), you can’t view or print epix’s output files,
nor can you run flix or elaps.

A text editor such as emacs or vim that facilitates formatting C code is
extremely useful for writing input files. ePiX comes with an emacs mode,
written by Jay Belanger, that allows you to write, compile, and view ePiX

figures without leaving emacs.
In the presence of LATEX and Ghostscript, only a few standard utilities are

needed to run ePiX’s “conversion to eps/pdf” script elaps, namely grep,
sed, epstopdf, and ps2epsi.

Finally, flix uses ImageMagick’s convert utility to create png images,
and to assemble pngs into animated mng files. The programs animate and
display are useful for viewing flix output.

Aside from their reliance on specific programs, ePiX’s shell scripts are
written using Unix-style pathnames. Thus, the most straightforward way to
use ePiX is to install a Unix-like environment.

Alternatives for Windows

Version 0.8.9 of ePiX has been implemented in Python 2.2 by Andrew Sterian,
making ePiX available on any platform that supports Python, and without
requiring a C++ compiler or bash. Python is a GPL-ed scripting language,

5

and is available with a Windows installer and detailed instructions. The
easiest alternative for Windows users is probably to install Python 2.2 or
later (if necessary) and Pyepix. The Pyepix project home page is:

http://claymore.engineer.gvsu.edu/~steriana/Python/index.html

Cygwin, and theoretically the de Lorie tools, can be used to run ePiX

under Windows. The following Cygwin packages are probably necessary and
sufficient:

[] bash [] GhostScript [] sh-utils

[] binutils [] ImageMagick [] teTeX

[] fileutils [] make [] textutils

[] gcc [] sed

The emacs and gv packages are highly desirable, but not absolutely necessary.
The author has received scattered reports of success with Cygwin, but is not
sufficiently knowledgeable to provide substantial support.

1.2 Installation

ePiX is distributed over the World-Wide Web as source code. Packages
(stable and development) can be found at

http://math.holycross.edu/~ahwang/current/ePiX.html

In a web browser, shift-click on a link to download. The latest stable
release is also on the CTAN mirrors, in the graphics directory. There are
instructions for downloading an entire directory; it is not recommended that
you download the files individually. (Some users of Red Hat have reported file
permission problems when unpacking the CTAN tarballs. If you encounter
this difficulty, please try downloading the sources from the project main
page.) Unpack the compressed tar file with the appropriate command:

tar -zxvf epix-x.y.z_complete.tar.gz

tar -jxvf epix-x.y.z_complete.tar.bz2

(x.y.z is the version number) or, if your tar doesn’t do decompression,

gunzip -c epix-x.y.z_complete.tar.gz | tar -xvf -

bzcat epix-x.y.z_complete.tar.bz2 | tar -xvf -

6

cd to the source directory, which is named epix-x.y.z. The INSTALL file
contains detailed installation instructions. If you’re impatient, the short
of it is make [test]; make install. Respectively, these steps build the
program, optionally run a test compile on the included sample files, and
install the library, header file, and shell scripts.

There is an optional package, contributed by Svend Daug̊ard Pedersen,
that supplies extensions for enhanced Cartesian and logarithmic coordinate
systems, and for hatching polygons and planar regions. To build this package,
do make contrib before make install.

In order to use the contrib package, an input file must contain the line
“using namespace ePiX contrib;” For documentation, please see the di-
rectory $INSTALL/share/epix/tutorial/contrib.

By default, ePiX installs in subdirectories of /usr/local; if you want to
install elsewhere, see the INSTALL file for detailed instructions. You may also
want to consult POST-INSTALL for information on setting your PATH variable
so your shell can find ePiX.

To re-iterate, ePiX is not a stand-alone program, but consists of a C/C++
library, header, and a shell script, and therefore requires a compiler for nor-

mal use. The GNU compiler (g++) and C++ library are strongly preferred,
both because they are used to develop ePiX, and because they implement
many mathematical features not specified by ANSI C. ePiX is also reliant on
the GNU shell bash. Most Unices (and all major GNU/Linux distributions)
have bash in /bin/bash. The INSTALL file explains how to cope with bash

that is elsewhere. If you port ePiX to another shell or operating environment,
or package ePiX for other systems, please notify the author so that your work
can be linked from the project page and mentioned in the documentation.

Should it come to this, the command make uninstall will remove in-
stalled components of ePiX from your system. You must be in the source
directory, and may need to log in as root.

Other Sources

An RPM spec file is maintained by Guido Gonzato. If you run a GNU/Linux
distribution that uses RPM 4.x to manage installed packages (e.g., a recent
version of Red Hat or Mandrake), you can build and install ePiX with the
command (as root)

rpm -ta epix_complete.tar.gz

7

An rpm source file is available from the project page at Holy Cross. Separately
maintained packages exist for FreeBSD and Gentoo:

http://www.freshports.org/graphics/epix/

http://packages.gentoo.org/search/?sstring=epix

The very latest source code for Versions 1.x and 2.x (a.k.a. The Next Gen-
eration) is available by CVS from

http://savannah.nongnu.org/cgi-bin/viewcvs/epix/epix/

The main project page may migrate to

http://savannah.nongnu.org/projects/epix

Development

There is a (currently very low-traffic) mailing list for all things ePiX-related:

ahwang-epix@mathcs.holycross.edu

You must be a subscriber in order to post, and a post must have a non-empty
Subject: line. To subscribe, send an empty message to

ahwang-epix-subscribe@mathcs.holycross.edu

Please contact the author if you are interested in development.

8

Chapter 2

Getting Started

This chapter describes the basics of creating figures in ePiX, and is writ-
ten for readers who are familiar with LATEX but completely new to C++. No
detailed knowledge of C++ is needed to use ePiX, only a bit of grammar
(roughly C grammar, without pointers) that is easily absorbed by exam-
ple. As you read, please study the sample files that are distributed with
ePiX. If you have installed in the default location, the samples are under
/usr/local/share/epix. The quickest way to learn is to copy sample files
to a convenient location and experiment by modifying them and seeing how
your changes affect the figure’s appearance.

2.1 Running ePiX

The sample and tutorial figures carry the preferred file extension, .xp. To
convert file.xp to a viewable figure, do “elaps file.xp” to produce an
eps file, or “elaps --pdf file.xp” for PDF. Like LATEX, ePiX is non-
interactive, and run from the command line. Each shell script accepts a
--help (or -h) option that prints a short summary of available options. Un-
der X, a graphical environment may be simulated by using emacs (with Jay
Belanger’s ePiX mode) to edit and compile files, and a previewer such as gv
to view figures as they are processed. In gv, select “Watch file” from the
“State” menu to have images update automatically.

While elaps produces output files suitable for immediate previewing,
epix is far preferable for documents processed with LATEX (rather than
PDFLATEX). The output of epix is eepic, an enhancement to the LATEX

9

picture environment that allows lines of arbitrary length, slope, and width.
An eepic file is typically a few percent the size of a comparable eps file, and
is a text file that can be read (and edited) with only knowledge of LATEX.

An eepic file is included directly into a LATEX document, say sample.tex,
that contains the line

\usepackage{epic,eepic,pstcol}

Somewhere in sample.tex is the figure itself:

\begin{figure}[hbt]

\begin{center}

\input{example.eepic}

\caption{A compiled \ePiX\ figure.}

\label{fig:example}

\end{center}

\end{figure}

In a text editor, create an ePiX input file for the figure, say file.xp, then
issue the command

epix file.xp example.eepic

File extensions may be omitted, as can the name of the output file if you want
it to be the same as the name of the input (file.eepic in this example).

The preferred extension for an ePiX file is “.xp” (for eXtended Picture),
but the source code extensions “.c”, “.cc”, “.C”, and “.cpp” are also per-
mitted. If the emacs configuration file is properly set up, emacs can rec-
ognize “.xp” files, automatically enter ePiX mode, and insert a preamble
template. The file POST-INSTALL has detailed instructions.

To process the LATEX file, either run LATEX as usual, or do

laps sample

which runs LATEX on sample.tex, then uses dvips to convert the dvi to the
Postscript file sample.ps. laps stands for “LATEX to Postscript”.

Figures in graphical format (as opposed to eepic) can be useful if you use
xdvi to preview (color is available in included files), or if you are tweaking
the figures in a large document, and do not want to recompile the entire
document to change just one figure. elaps also handles eepic files (i.e., acts
as eepic2eps and eepic2pdf), even those not produced with ePiX.

10

−1 0 1

y =
√

1 − x2

Figure 2.1: A semicircle.

2.2 A Sample File

Figure 2.1 is created from the commented source file semicirc.xp:

#include "epix.h"

using namespace ePiX; // similar to \usepackage

// "double" = double-precision floating point

double f(double x) { return sqrt(1-x*x); } // i.e., f(x) = \sqrt{1-x^2}

double width = 0.6, height = f(width); // rectangle dimensions

P label_here(0.5, f(0.5)); // position of graph label

int main()

{

unitlength("1in");

picture(2.5, 1.25); // set printed size, 2.5 x 1.25in

bounding_box(P(-1, 0), P(1, 1)); // corners; depict [-1,1] x [0,1]

begin(); // ----- figure body starts here -----

h_axis(4); // mark off 4 intervals, etc.

v_axis(2);

// 2 label intervals; shift down 4pt, place below Cartesian location

h_axis_labels(2, P(0, -4), b);

arc(P(0,0), 1, 0, M_PI); // center, radius, start/end angle

bold(); // paths only, not fonts

rect(P(-width,0), P(width, height)); // rectangle given by corners

// shift label right 2pt, up 4pt, align on reference point (default)

label(label_here, P(2,4), "$y=\\sqrt{1-x^2}$");

end();

}

11

ePiX commands are of three types: definitions (of data and functions), at-
tribute setting, and drawing. Like a LATEX document, an ePiX file contains
a preamble, which specifies aspects of the figure’s appearance, and a body,
which contains the actual figure-generating commands.

Variables have been used to give logical structure to the figure: The width
of the rectangle and the the location of the label are localized to two lines
in the preamble, and the rectangle’s height is computed from the width.
The capacity to structure figures logically is one of ePiX’s strengths. In a
file as short as this, hard-wired constants are adequate, but the importance
of structuring increases rapidly with the size of the input file, and good
habits are best formed from the start. The function definition is mostly for
illustration, though does provide slightly better organization than

double width = 0.6, height = sqrt(1-width*width);

double lab_x = 0.5;

P label_here(lab_x, sqrt(1-lab_x*lab_x));

Command Syntax

Attribute-setting and drawing commands are C++ functions, blocks of instruc-
tions that can be invoked—or called—by name. Like mathematical functions,
C++ functions accept arguments as input and return values. Each argument
has a type, such as integer (int), real number (double, for “double-precision
floating point”), or P (ePiX point), and may be hard-coded or specified sym-
bolically. C++ is a “typed” language, meaning that the compiler checks func-
tion calls for the proper type and number of arguments, and issues an error
if no matching function is found.

C++ allows functions to be given default arguments; when a function has
defaults, the corresponding argument(s) may be omitted in a call. A com-
mand is usually described by listing the types and names of the arguments.
For brevity, the type double may be left tacit. Default arguments are de-
noted by square brackets. The command

line(P pt1, P pt2, [double stretch], [int n]);

defines a “line” command that accepts two mandatory arguments of type P,
an optional real-valued stretch parameter, and an optional integer n. When
a function is called in an input file, arguments’ types are not given:

line(P(-2,1), P(1,0), 6.4);

The last argument is assigned its default value in this case.

12

2.3 Basic Picture Concepts

This section outlines the basic typographical and mathematical data used
to size and place a figure. The preamble of an ePiX input file is everything
that comes before the begin() line; the body comprises the portion of the
file between the begin() and end() lines, inclusive.

Printed Size and Location

LATEX treats the contents of a picture environment as a single box, aligned by
default on the lower left corner. An ePiX file must tell LATEX how large the
printed figure will be, and where to align this “picture box”. The commands

picture(2.5, 1.25);

unitlength("1in");

offset(0.25,-0.5);

set LATEX’s unitlength to 1 in, create a picture environment 2.5 in wide and
1.25 in high, then shift the picture right by 0.25 in and down by 0.5 in. The
picture and unitlength lines are mandatory in an ePiX preamble. The
offset is optional and defaults to (0, 0).

The argument of a unitlength command is a numerical constant fol-
lowed by one of the following valid LATEX length units: bp (big point), cm
(centimeter), in (inch), mm (millimeter), pc (pica), pt (point, the default
unit), and sp (scaled point). (There are 72 big points per inch, 12 points
per pica, and 65536 scaled points per point.) ePiX does not directly support
the use of different horizontal and vertical length units; you are expected to
perform any conversions manually.

A non-zero offset causes the contents of a picture to appear in a location
where LATEX does not expect them. This may be useful when an eepic file
is included into a LATEX document, but requires visual tweaking. A non-zero
offset is risky when compiling a figure into EPS or PDF with elaps, since
dvips may crop the figure according to rules of its own.

2.4 Logical Size, and Aspect Ratio

An ePiX figure occupies a rectangular Cartesian “bounding box”. The lower
left and upper right corners of the bounding box are known to ePiX as

13

(x min,y min) and (x max,y max), while the width and height are x size and
y size. The bounding box is a virtual, advisory data structure; its dimen-
sions are not directly related to the figure’s printed size, and picture elements
are not constrained to the bounding box by default.

The bounding box is specified in the preamble by giving a pair of opposite
corners; the command

bounding_box(P(-1,0), P(3,2));

sets the bounding box to be [−1, 3] × [0, 2]. Either pair of opposite corners
may be used, though confusion is less likely if the lower left and upper right
corners are given. Affine scaling maps the bounding box to the picture box
when the output file is written:

epix

(xmin, ymin)

(xmax, ymax)

Cartesian bounding box

(0, 0)

(hsize, vsize)

LATEX picture box

The figure’s aspect ratio is controlled by sizing the bounding box. The aspect
ratio is “true” if the bounding box and picture box are geometrically similar,
e.g., if both boxes are 1.5 times as wide as they are tall.

2.5 Creating and Drawing Objects

Conceptually, ePiX builds a 3-dimensional virtual “world”, then photographs
the world on a 2-dimensional “screen”. The screen contains the bounding
box, which is affinely scaled to a LATEX picture environment. By default, the
screen is the (x1, x2)-plane and the world is renderd by looking straight down
the x3-axis.

Geometric Data Structures

The simplest object in the world is a point, represented by an ordered triple
of real numbers (double-precision floats). The function P(x1,x2,x3) creates
the point (x1, x2, x3). If only two arguments are provided, x3 = 0 by default.
This convention allows ePiX to treat 2- and 3-dimensional figures uniformly.
Often points are given names, so they can be used repeatedly throughout a
figure. The (essentially equivalent) commands

14

P pt(x_min, 2*x_min, 4);

P pt = P(x_min, 2*x_min, 4);

create a point named pt and initialize it to (xmin, 2xmin, 4), using the current
value of xmin. This value is used each time pt occurs subsequently. In
general, an expression involving variables may be used to assign a value to a
data structure (not just a point). However, a variable cannot be used until
a value has been assigned. For example, the commands above will not work
before the bounding box is set, since the value of xmin is unknown. Further,
changing the value of a variable does not “update” the values of dependent
data structures.

Points can be given in polar, cylindrical, or spherical coordinates; all
arguments are numerical.

P pt=polar(r, t); // (r*Cos(t), r*Sin(t))

P pt=cyl(r, t, z); // (r*Cos(t), r*Sin(t), z)

P pt=sph(r, t, phi);

The arguments of sph are radius (distance to the origin), longitude (mea-
sured from the x1-axis), and latitude (measured from the equator). By de-
fault, angles in ePiX are measured in radians. Two other “angular modes”
are available: degrees and revolutions. The angular mode is set with an
identically-named command, e.g., degrees(), and all trigonometric opera-
tions are affected.

ePiX provides algebraic operations on triples, including addition, scalar
multiplication, the dot and cross products, and a few others. These opera-
tions are used to express relationships between triples, as in

P p1(2,1), p2(-3,1);

P q1 = p1-p2, q2 = 2*p1-3*p2, q3=q1*q2;

The points q1 = p1−p2, q2 = 2p1−3p2, and q3 = q1× q2 could be given hard-
coded values. However, defining their values symbolically imbues the figure
with logical structure, making the file easier to read, modify, and maintain.
The standard basis is available: E 1=P(1,0,0), etc.

Practically, ordered triples of numbers are used to represent both loca-

tions (points) and displacements (vectors). Mathematically, the concepts
are distinct; for example, it makes geometric sense to add two displacements
(obtaining a displacement), or to add a displacement to a location (to get

15

a location), but two locations cannot be added meaningfully. Algebraic op-
erations act on vectors, not points. ePiX does not enforce the distinction
between points and vectors, but will in The Next Generation.

ePiX implements data structures that represent line segments, circles,
planes, and spheres. These structures can be translated, scaled, and inter-
sected. A code snippet illustrates basic techniques:

circle C1(P(0,1), P(0,-1), P(0.5,0)); // circle through 3 pts

C1 += P(0.1,0); // translate center

C1 *= 2; // double the radius

sphere S1(P(0,0,0), 1.5); // sphere of radius 1.5 at origin

plane P1(P(0,0,0), E_3); // (x,y)-plane

circle C2 = S1*P1; // circle of intersection

Use of these data structures is explained in more detail in Chapter 3.

Drawing

The commands of the previous section create data structures but do not
write any output. Each type (other than P) is drawn with “object-oriented”
syntax. For example, if C1 is a circle, then the command C1.draw() draws
the circle. The effect of drawing a plane or sphere is described in Chapter 3.
ePiX also provides high-level commands that draw polygons, curves, and
compound objects, such as arrows and coordinate axes. Drawing commands
must come in the body of the file, after begin().

line(P p1, P p2);

triangle(P p1, P p2, P p3); // vertices specified

rect(P p1, P p2); // coord rect w/opposite corners

quad(P p1, P p2, P p3, P p4); // arbitrary quadrilateral

spline(P p1, P p2, P p3); // quad/cubic splines given

spline(P p1, P p2, P p3, P p4); // by control points

arc(P center, radius, t_min, t_max);

ellipse(P ctr, P v1, P v2, [t_min], [t_max], [int n]);

The arguments of rect must lie in a plane parallel to a coordinate plane; the
sides of the rectangle are parallel to coordinate axes.

16

An arc has the given center and radius, and lies in a plane parallel to
the (x1, x2)-plane. Angles are measured from the E1 direction in the current
angle units.

An ellipse draws an elliptical arc with the specified center and “axes”;
precisely, the curve drawn is parametrized by

t 7→ ctr + (cos t)v1 + (sin t)v2, tmin ≤ t ≤ tmax.

(Note that ctr is a location, while v1 and v2 are displacements.) As with
arcs, angles are measured in current angle units. If the parameter bounds
are omitted, the entire ellipse is drawn. The final (optional) argument says
how many points to use when drawing the arc. This can be omitted safely
in most situations.

2.6 The Camera

Art students sometimes practice perspective by tracing on a window with
grease pencil, a mathematical transformation called point projection. ePiX’s
default mapping from the world to the screen is similar. Imagine standing
before a scene at a viewpoint, and possessing X-ray vision, so that objects
are transparent. Somewhere in front of you is a plane, the screen. The target

is the point on the screen obtained by dropping a perpendicular from the
viewpoint.

Three mutually perpendicular unit vectors sit at the target: sea, sky, and
eye. The sea vector points to the right, sky points upward, and eye points
straight from the target to the viewpoint. The bounding box of the figure is
defined with respect to the screen’s (Cartesian) sea-sky coordinate system.

Given a point p in front of the viewpoint, we want to determine the
screen location to which p projects. Join p to the viewpoint by a line; this
line intersects the screen plane exactly once, and the point of intersection is
where we draw p in the screen.

At the start of a figure, the camera is initialized to lie on the x3-axis
at very large distance from the origin. The resulting view, essentially pro-
jection along the axis, is suitable for 2-dimensional figures. The camera is
manipulated with object-oriented syntax:

camera.at(P posn); // set viewpoint to posn

camera.look_at(P targ); // set target

17

Sea

Sky

Eye

Viewpoint

Screen

Object

Shadow

Target

Figure 2.2: Point projection.

camera.range(double dist); // fix target, move viewpoint

camera.focus(double dist); // fix viewpoint, move target

camera.rotate_sea(double angle); // rotation about an axis

These commands must come in the figure body.

2.7 Drawing Attributes

ePiX creates line drawings, not pixmaps. In an eepic file, objects are either
pointlike (LATEX glyphs, text boxes) or pathlike (everything else). The ap-
pearance of a pathlike object depends on the line style, width, filling, and
color. Each attribute is a declaration, remaining in effect until superceded or
the file ends. When a file starts, paths are drawn solid, black, unfilled, and
with thinlines (a width of 0.4 pt) in effect. Attribute-setting commands
should come in the figure body.

Path Width and Style

The standard path widths are plain (thinlines) and bold (thicklines).
Other widths are available via a pen() command. The argument is a number,
interpreted as a length in pt, or a number followed by a two-letter LATEX
length as in the unitlength() command. Journals discourage line widths
smaller than about 0.5 pt, and a multitude of author-specified line widths
tends to look cluttered and ad hoc. If possible, use the standard widths.

18

plain(); // thinlines, about the same as pen(0.4);

bold(); // thicklines, pen(0.8);

pen("0.02in"); // set path width to 0.02 in

The path style is one of solid, dashed, or dotted. The style is set with an
identically-named command, e.g., dashed(). Every pathlike object in ePiX

is drawn using a list of points. When the path style is solid, the points are
joined connect-the-dots fashion. A dotted path is drawn by placing a small
dot at each point of the path. When the style is dashed, line segments are
drawn partway from each vertex to its neighbors.

Solid Dashed Dotted

A few parameters can be adjusted manually: the page distance between
consecutive points on a path (for polygons—triangles, quads, etc.), the “dash
density” (the percentage of a dashed path filled by dashes), and the dot size:

dash_fill(0.7); // dashes fill 70% of point gap

dash_length(6); // path points separated by 6pt

dot_sep(8); // path points separated by 8pt

dot_size(2); // dots 2pt in diameter

Color and Filling

An ePiX output file achieves color through the pstcol style, an amalgama-
tion of color and PSTricks styles. There are three available color models:
rgb, cmyk (cyan, magenta, yellow, and black), and named (primary colors
only). An rgb color is specified by three numbers between 0 (no color) and 1
(full saturation), each of which represents the density of a primary color (red,
green, and blue respectively). A cmyk color is similarly set by giving four
densities. Finally, a primary color (r, g, or b; c, m, or y; black and white)
may be specified by name, with an optional density.

rgb(1, 0, 1); // magenta

cmyk(0,1,0,0); // same thing

magenta(); // method III

rgb(1, 0.7, 0.7); // light red

rgb(0.4, 0, 0); // dark red

red(0.4); // same thing

19

Like all parameters, color densities can depend on variables. Values that lie
outside the interval [0, 1] are “clipped”; for example, rgb(1.4,-0.05,2) is
also magenta.

The fill() command causes closed paths to be gray-shaded, using Post-
Script specials. The depth of gray ranges from 0 (white) to 1 (black), and
defaults to 0.3. The command gray(0.4) sets the depth to 0.4. Filling is
deactivated by the command fill(false). The order of filled objects in the
source file is significant, because ePiX writes its output in the same order,
and PostScript has no transparency. Layering, hidden object removal, and
color shading are discussed in Chapters 3 and 4.

2.8 Typography

In an ePiX file, points are denoted with LATEX glyphs (“markers”) or text
boxes (“labels”). A marker occupies a box of zero size, and is placed at a
specified Cartesian location. A label has typographical size, so its placement
is more involved. When the size or aspect ratio of a figure is adjusted, the
font size stays the same. In order to keep a label aligned properly over a
range of sizes, a scale-invariant alignment point is attached to each label,
and Cartesian coordinates are used to position the alignment point. The
alignment point is controlled both by a true-pt offset and an optional LATEX-
style alignment option.

Markers

ePiX markers are called by name:

spot(P pt); dot(P pt); ddot(P pt);

box(P pt); bbox(P pt);

ring(P pt); circ(P pt);

spot and (d)dot are solid dots that cannot be colored. box and bbox are
solid, colorable squares. A ring is colorable and transparent, while a circ

is uncolorable and opaque. Markers in the same column are the same size,
and each column is 1.5 times the diameter of the next. The diameter of a
dot (hence that of all the above markers) is set with dot size(diam). The
argument, 3 by default, is a number of pt. The glyphs listed in Table 2.1 are
available via the command

20

CIRC SPOT RING DOT DDOT

PLUS+ OPLUS⊕ TIMES× OTIMES⊗

DIAMOND� UP4 DOWN5 BOX BBOX

Table 2.1: ePiX’s marker types.

marker(P pt, <MARKER TYPE>);

Labels

A label is a typographical box. Since a LATEX box occupies a rectangle on
the printed page, a single location is not enough information to position a
label within a figure; an alignment point is needed in addition. By default,
the alignment point of a text box is its reference point, the intersection of
the left edge and the baseline, which is used by LATEX to position the box on

the page: y = f(x) An alignment point may be shifted manually:

label(P(3,2), P(2,-1), "$\\rho=\\sin \\theta$");

typesets the equation ρ = sin θ and places the resulting text box at Carte-
sian location (3, 2), but shifted right by 2pt and down by 1pt. Note that
C++ treats “\\” as a “backslash control sequence”, so a double backslash is
needed in the source to get a single backslash in the output. The general
label commands are:

label(P posn, P offset, <label text>);

label(P posn, <label text>);

label(P posn, P offset, <label text>, align);

The first command prints a label with its LATEX reference point at the Carte-
sian location posn, offset in true points (on the page) by the specified amount.
Offsets of 2, 4, 6, 12, or 18 points work well with a 12-point font.

The second command prints the label text in a LATEX box centered at posn.
While this is perhaps the most obvious way of placing a label, it may not be
the correct method, since labels often mark a geometric object that should
not be covered by the label.

21

In the third command, the align option may be one—or an appropriate
pair—of t, b, r, or l (top, bottom, right, left), or c (center). As with
offsets, these alignment options specify the position of the label relative to

the Cartesian location p, namely they work opposite to the way they work
in LATEX. For example, the alignment option br puts the label below and to
the right of p.

[l][r] [t]
[b]

[tr][tl]
[br][bl]

Each label command has a corresponding “mask” version (masklabel)
that draws an opaque white rectangle under the label text. Masking is useful
when the text of a label sits in a cluttered part of the figure. An eepic file
containing masklabels requires the pstcol package.

Labels can be rotated; the angle is set in current angle units with the
command label angle(theta). A rotation angle of 90 degrees prints labels
suitable for a vertical axis. An eepic file containing rotated labels requires
the rotating package.

When constructing and placing a label, keep in mind that

• Alignment offsets are specified in pt (i.e., page coordinates), not in
Cartesian units, because the alignment point should not depend on the
logical or printed size of the figure.

• The label text is enclosed in double quotes (the single character "), and
contains the LATEX code to generate the label. Backslashes are doubled.

2.9 C++ Basics

An ePiX source file is a C++ program. If you’ve successfully modified and
compiled any of the sample files, you know enough C++ to use ePiX. In the
author’s experience, C grammar suffices for most applications. An excellent
introduction to definitions of functions and variables, control statements, and
overall program structure is Kernighan and Ritchie’s The C Programming

Language, second edition [1].
Jay Belanger’s emacs mode for ePiX inserts a file template when an empty

buffer is opened with the extension xp. This section explains the purposes
served by the template. A few additional remarks may help you avoid basic
syntax pitfalls.

22

Comments

C++ has two types of comments. C-style comments, which may span several
lines, are delimited by the strings /* and */. One-line comments, analogous
to the LATEX %, are begun with //. A one-line comment may appear within a
multiline comment, but a C-style comment may not; the compiler will mistake
the first */ it encounters as the end of the current multiline comment.

Pre-Processing

The compiler ignores nearly all whitespace (spaces, tabs, and newlines),
which should be used liberally to make files easy to read. Other punctuation
(periods, commas, (semi)colons, parentheses, braces, and quotes) dictates file
parsing, and must adhere stringently to grammar.

A C++ file consists of “statements”. A statement ends with a semicolon,
and conventionally a file contains one statement per line (when possible).
For historical reasons, an input file is “pre-processed” before the compiler
sees it. The most important use of pre-processing in ePiX is file inclusion.
An ePiX file always begins with the lines

#include "epix.h" // N.B. pre-processor directive, no semicolon

using namespace ePiX;

The first line is analogous to a LATEX usepackage command: It causes the
pre-processor to replace the line with the contants of a file, thereby importing
the names of commands provided by ePiX. To avoid name conflicts, ePiX’s
commands are enclosed in a “namespace”. For example, the label command
is actually known to the compiler as ePiX::label. The second line above
tells the compiler to apply the prefix tacitly.

Variables and Functions

Definitions of variables and functions play the same role in a figure that macro
definitions do in a LATEX document: gathering and organizing information on
which the figure depends. A variable is defined by supplying its type, name,
and initial value. By far the most common data types in ePiX are double,
P, and int. The name of a variable may consist (only) of letters (including
the underscore character) and digits, and must begin with a letter:

23

my_var, my_var2, _MY_var, __, aLongVariableName; // valid

my-var, 2var, v@riable, $x, ${MY_VARIABLE}; // not valid

Variable names are case-sensitive. There are numerous conventions regarding
the significance of capitalization. Generally, make names descriptive but not
unwieldy, and avoid names that begin with an underscore (unless you know
what you’re doing).

A function accepts “arguments” and “returns a value”. To define a func-
tion in C++, you must specify the return type, the name of the function, the
types of the arguments, and the algorithm by which the value is computed
from the inputs. The code block

double f(double x)

{

return sqrt(1-x*x);

}

specifies the double-valued function f of one double variable defined by
the formula f(x) =

√
1 − x2. Several sample and source files (especially

functions.cc) give more interesting examples. A function definition should
be formatted as above for readability.

Program Execution

All the “action” in a C++ program occurs inside the special function main.
Running a compiled C++ program is viewed by the operating system as calling
the program’s main function. The return value (an int) is the program’s
exit status. In an ePiX file, the main action usually consists of setting the
logical and printed size of the figure, then building and drawing the figure,
changing attributes when desired. ePiX output proper starts with begin()

and terminates with end(). The intervening statements constitute the body

of the figure.
In C++, a function may not be defined inside another function. Thus,

variables may be defined inside main, but functions cannot be.

Raw output

More-or-less verbatim text can be printed to the output file. A single back-
slash is produced by a double backslash in the input file. Certain letters have
special meanings when backslash-escaped, including “\n” (newline) and “\t”

24

(TAB). Unlike LATEX, C++ does not require a space to separate an escape se-
quence from following text; the string “\textwidth” is read “TABextwidth”
by the compiler.

As an application, a complete LATEX figure environment (with caption
and label) can be produced by an ePiX file. Newlines must be added explic-
itly, and all printing statements must occur inside the call to main().

#include "epix.h"

using namespace ePiX;

using std::cout; // C++’s output function

int main()

{

cout << "\\begin{figure}[hbt]\n";

unitlength(...); // picture, bounding_box, etc.

begin();

< ... ePiX commands ... >

end();

cout << "\\caption{A \\LaTeX\\ figure.}\n" // N.B. line con-

<< "\\label{fig:example}\n" // tinues, no ";"

<< "\\end{figure}\n%%%%\n"; // LaTeX formatting

} // End of main()

Conditionals and Loops

An algorithm’s behavior usually depends on some internal state. A condi-

tional statement causes blocks of code to be executed depending on some
criterion. A loop repeatedly executes a code block, usually changing the val-
ues of variables in a predictable way, so that the loop exits after finitely many
traversals. Figure 2.3 illustrates both conditionals and loops with Euclid’s
algorithm for the greatest common divisor. Three pieces of notation require
explanation: j%i means “j (mod i)”, || is logical “or”, and == is “test for
equality”. (A single “=” is the assignment operator.)

2.10 High-Level Picture Elements

ePiX implements a miscellany of high-level drawing capabilities: arrows, co-
ordinate axes and axis labels, polar plots, data plotting from files, calculus op-

25

int gcd (unsigned int i, unsigned int j)

{

int temp=i;

if (i==0 || j==0)

return i+j; // define gcd(k,0) = k

else {

if (j < i) // swap them

{

temp = j;

j=i;

i=temp;

}

// the work is done here...

while (0 != (temp = j%i)) // assign temp, test for zero

{

j=i;

i=temp;

}

return i;

}

}

Figure 2.3: Euclid’s division algorithm in C++.

erations, vector fields, solutions of differential equations, and non-Euclidean
geometry.

Arrows

An arrow is specified by its tail and tip. An optional third argument scales
the arrowhead.

arrow(P tail, P tip, [double scale]);

dart (P p1, P p2); // same as arrow(p1, p2, 0.5);

aarrow(P p1, P p2); // double-headed arrow <--->

Pictorially, an arrow consists of a line segment (the shaft) surmounted
by a triangle (the arrowhead). In profile, an arrowhead’s width is 3pt, and
its height is 5.5 times the width. The actual printed height depends on the
arrow’s orientation with respect to the camera.

26

By default, an arrowhead is a hollow triangle, which can be colored.
The fill() command produces solid, uncolorable arrowheads. PSTricks

commands can be used for solid colored arrows.

Coordinate Axes and Labels

A coordinate axis consists of a line between two points together with a spec-
ified number of regularly-spaced tick marks:

h_axis(p1, p2, n); // n subintervals (n+1 ticks)

v_axis(p1, p2, n);

The style of tick mark is appropriate for an axis of the given type. If the
endpoints are omitted, they default to p1 = (xmin, 0) and p2 = (xmax, 0) for a
horizontal axis, or to p1 = (0, ymin) and p2 = (0, ymax) for a vertical axis. If
the bounding box has integer width and/or height, then omitting the number
of points draws tick marks one unit apart.

Labels for a horizontal axis are generated with:

h_axis_labels(P p1, P p2, int n, P offset, [alignment]);

This puts (n+1) evenly-spaced labels on the segment joining p1 and p2. The
labels are automatically generated to match their horizontal location. As for
ordinary labels, the offset is in pt, and the optional LATEX-style alignment
option places the labels using their corners rather than their reference points.
Labels for a vertical axis are generated in the obvious way.

As for coordinate axes, the initial and final points may be omitted in an
axis label command, with the same defaults. However, the offset and
number of labels must always be specified.

Coordinate Grids

Cartesian grids fill a coordinate rectangle, and have a specified number of
lines in each direction. A polar grid has specified radius, rings, and sectors.

grid(n1, n2); // fills the bounding box

grid(p1, p2, n1, n2); // fills the box with corners p1, p2

grid(p1, p2, mesh(n1, n2), mesh(m1,m2));

polar_grid(r, n1, n2);

27

Each command draws an n1 by n2 grid. The third uses an m1 × m2 mesh,
which is useful only if the camera lens does not map lines in object space to
lines on the screen.

Graph paper may be created by superimposing grids:

pen(0.25);

grid(10*x_size, 10*y_size);

pen(0.5);

grid(2*x_size, 2*y_size);

pen(1);

grid(x_size, y_size);

S. D. Pedersen’s contrib/ package provides enhanced Cartesian graphs.
See contrib/doc in the source for documentation.

2.11 Basic Plotting

Because eepic.sty can draw lines of arbitrary length and slope, curves can
be approximated by connect-the-dots paths. ePiX renders curves, polygons,
and function graphs in this way.

For the moment, “function” means “function of one variable” (precisely,
a double-valued function of a double variable). A function graph depends
on the domain and the number of points to use. Each of the commands

plot(f, t_min, t_max, n);

polarplot(f, t_min, t_max, n);

shadeplot(f, t_min, t_max, n);

graphs the function f on the interval [t min, t max] by dividing the interval
into n subintervals of equal length. The first gives a Cartesian plot, the
second a polar plot with bounds in current angular units, the third shades
the region between the graph and the horizontal axis. If two functions are
given to shadeplot, the region between their graphs is shaded.

Data plotting

Files of numerical data can be manipulated, analyzed, and plotted. The
format for a data file is one or more floating-point numbers per line, with the
same number of entries per line. A line in a data file that starts with a % is
a comment.

28

Roughly, the basic plot command reads numbers from two (or three)
columns of a specified file, treats them as coordinates, and plots the resulting
points.

plot("filename", STYLE, columns, [i_1], [i_2], [i_3], [F]);

The first argument is the name of the data file. The STYLE may be PATH,
which joins the points in the order they appear, or any of the marker types
in Table 2.1. Next comes the number of columns (entries per line); if there
are fewer columns than expected in the file, nothing is plotted, while if there
are more columns than expected, a warning is issued but the data is plotted.
The remaining arguments are optional. The integers ik specify columns from
which to extract data. The column entries are fed to the P-valued function F

to obtain points. If F is omitted, it defaults to the Cartesian point construc-
tor. If i3 is omitted, the i1 and i2 columns are used to create points; by
default, i1 = 1 and i2 = 2. For example, if mydata.dat contains 6 columns
of numbers, then the respective commands

plot("mydata.dat", DOWN, 6);

plot("mydata.dat", BOX, 6, 2, 4, 5, sph);

plot the first two columns of mydata.dat, putting a “5” at each point;
and extract the second, fourth, and fifth columns of the file, treat them as
spherical coordinates, and put a “ ” at each point.

For more elaborate (e.g., user-defined) analysis, data may be read into a
FILEDATA structure. A FILEDATA is a C++ vector of columns, each column
having as many entries as there are lines of data in the file. The snippet
below reads data from a file, then plots the result.

FILEDATA my_cols(6); // vector of 6 columns

read("mydata.dat", my_cols); // read data from file

... // code to mangle data

plot(my_cols, BOX, 2, 4, 5, sph);

The number of columns needn’t be specified in the plot command, since it
was provided when the data was read. The post-TYPE options are identical
to the earlier plot command. The jth entry of the ith column is called
my cols.at(i).at(j).

ePiX implements simple numerical functions of a FILEDATA structure:

29

avg(my_cols, i_1); // arithmetic mean of the i_1 column

var(my_cols, i_1); // variance of the i_1 column

covar(my_cols, i_1, i_2);

regression(my_cols, i_1, i_2); // draw regression line

The covariance of two columns is obtained by subtracting the respective
averages entry by entry, then taking the dot product. The regression line is
the least-squares best fit for predicting column i2 from column i1.

30

Chapter 3

Reference Manual

This chapter covers the design and use of ePiX, assuming you’ve thoroughly
digested the material in Chapter 2. Remaining features are documented,
and the implementation described. If a feature isn’t explained here, please
consult the source code or contact the author.

3.1 More About C++

A textbook or similarly detailed reference is essential for serious study of C
or C++. Go with the masters: The C Programming Language, second edition,
by Brian Kernighan and Dennis Ritchie [1], is an excellent, manageable re-
source for the basics of procedural programming, while The C++ Programming

Language, by Bjarne Stroustrup [4], is a definitive, encyclopedaic reference.
C++ is a powerful, complex language whose syntax is similar to that of C,

or to the scripting languages of Maple and Mathematica. An ePiX input file
is source code for a C++ program that writes an eepic file as output. ePiX

may be viewed as an extension to C++; in the same way that LATEX furnishes
a high-level interface to TEX, ePiX provides a high-level bridge between the
computational power of C++ and the LATEX picture environment.

Like all high-level programming languages, C++ provides variables, func-
tions, and control structures. Variables hold pieces of data such as numerical
values and geometric locations, while functions operate on data. A con-
trol structure, such as a loop or conditional statement, affects the program’s
course according to the program’s current state. A source file is composed
primarily of “statements”, which perform actions ranging from defining vari-

31

ables and functions to setting figure attributes, performing calculations, and
writing objects to the output file.

Names and Types

Names of variables and functions may consist (only) of letters, digits, and
the underscore character. The first character of a name must not be a digit,
and the language standard reserves names starting with underscore for li-
brary authors. Names are case-sensitive, but it’s usually a bad idea to use
a single name capitalized and uncapitalized in a single file. Numerous capi-
talization conventions are used informally; this document uses uncapitalized
words separated by underscores for variables and functions, and occasionally
uses all capitals for constants. As with names of LATEX macros, primary
considerations are clarity (of meaning), readability, and consistency.

Every variable in C++ has a “type”, such as integer (int), double-precision
floating point (double), or Boolean (bool, true or false). ePiX provides
additional types, the most common of which is P, for point. The construct
P(x,y,z) creates (x, y, z), while P(x,y) gives (x, y, 0), which is effectively
the pair (x, y). A variable is defined by giving its type, its name, and an
initializing expression.

In C and C++, a pointer is a variable that holds the memory address of
another variable. Though more subtle than ordinary variables, pointers are
useful in expressing certain algorithms, such as sorting. In Japan, buildings’
addresses are assigned chronologically, rather than according to street loca-
tion. A building is analogous to a variable, while the address is a pointer. If
the Japanese parliament passed a law mandating that buildings be addressed
consecutively along the street, there would be two ways to proceed: Dig up
and relocate each physical building (move variables), or re-number the build-
ings in place (sort pointers). For similar reasons of efficiency, C++’s sorting
algorithms work with pointers.

C++ also provides reference variables, which allow a variable to be given
an additional name. Their use arises because of the way C++ functions treat
their arguments.

Functions

In a programming language, the term “function” refers to a block of code that
is executable by name. A C++ function takes a list of “arguments”, and has

32

a “return value”. This information, together with the function’s name, must
be provided when a function is defined. A function may not be defined inside
another function. However, a function may call other functions (including
itself) as part of its execution:

int factorial(unsigned int n)

{

if (n == 0) return 1;

else return n*factorial(n-1);

}

The special type void represents a “null type”. A function that performs
an action but does not return a value has return type void. A function that
takes no arguments may be viewed as taking a single void argument.

Every C++ program has a special function main(), which is called by
the operating system when the program is run. The arguments of main()

are command-line arguments, and the return type is an integer that signals
success or failure. User-specified functions must be defined before the call to
main() or in a separately-compiled file.

Functions in C++ may be as simple as an algebraic formula or as complex
as an arbitrary algorithm. Greatest common divisors, finite sums, numer-
ical derivatives and integrals, solutions of differential equations, recursively
generated fractal curves, and curves of best fit are a few applications in
ePiX. Several sample files contain user-level algorithms, which do not require
knowledge of ePiX’s internal data structures. The source file functions.cc

contains simple functions defined by algorithms, and functions.h illustrates
the use of C++ templates. Other source files, such as plots.cc, may be con-
sulted for Simpson’s rule, Euler’s method, and the like.

An error, such as division by zero or an attempt to intersect parallel lines,
may occur when a function is executed. In this situation, a C++ function can
“throw an exception”, or return an error type that the caller “catches” and
handles. If an uncaught exception is thrown, the program terminates. ePiX’s
intersection operators throw exceptions when certain conditions are not met.

Mathematical Functions

C++ knows several familiar mathematical functions by name:

sqrt exp log log10 ceil floor fabs

33

(fabs is the absolute value for a floating-point argument.) ePiX provides trig
functions and their inverses that are sensitive to angular mode:

Cos Sin Tan

Sec Csc Cot

Acos Asin Atan

The inverse trig functions are principle branches.
The function pow(x,y) returns xy when x > 0, and atan2(y,x) (N.B.

argument order) returns Arg(x + iy) ∈ (−π, π], the principle branch of arg.
C++ knows many constants to 20 decimal places, such as M PI, M PI 2, and
M E for π, π/2, and e respectively. ePiX defines a few additional functions:

recip sgn zero sinx cb id proj1 proj2

sgn sinx cb

recip is the reciprocal, defined to be 0 at 0; sgn is the signum function;
zero is the constant function; sinx is the function x 7→ sin(x)/x with the
discontinuity removed; cb (for “Charlie Brown”) is the period-2 extension of
the absolute value function on [−1, 1]; id is the identity mapping, defined
for an arbitrary data type; the proj functions return their first and second
variable, regardless of type.

The GNU C++ library defines other functions, including inverse hyperbolic
functions (acosh, etc.), log and exp with base 2, 10, or arbitrary b (log2,
etc.), the error and gamma functions (erf and tgamma [sic], respectively), and
Bessel functions of first and second kind: j0, j1, y0, etc. Use, e.g., jn(5,
) to get higher indices. The GNU C library reference manual [2] describes
these and other functions in detail.

Functions may be used in subsequent definitions, and functions of two (or
more) variables are defined in direct analogy to functions of one variable:

double f(double t) { return t*t*log(t*t); } // t^2 \ln(t^2)

double g(double s, double t) { return exp(2*s)*Sin(t); }

34

Basics of Classes

Unlike C, C++ supports “object-oriented programming”. In a nutshell, a
class is an abstraction in computer code of some concept, such as a point,
a sphere, a mapping that can be plotted, or a camera. Implementationally,
a class consists of members (named data elements) and member functions

(functions that belong to the class and have free access to members). The
idea is to encapsulate objects and the operations that make sense for them
in a single logical entity. In simple programming, classes may be treated like
built-in types.

C++ classes enforce access permissions on their members, protecting data
from being manipulated except in controlled ways. A class’s member func-
tions (and “public” members) constitute its user interface. The concept of
class separates logical aspects of a data type from a particular implementa-
tion.

Each “instantiation” of a class has its own member functions. A member
function therefore knows “which object” it was called on, and the call syntax
differs from standard function calls:

circle C1(P(1,0), 1.5); // circle of given center and radius

C1.draw(); // member function circle::draw();

Naturally, this call draws the circle C1.
A few short paragraphs cannot do more than scratch the surface of classes

and object-oriented programming. Please consult a book, such as Strous-
trup [4], for details.

References and Function Arguments

C and C++ are “call by value” languages. Actual variables are not passed to
a function; instead a copy of the value is made, and the function operates
only on the copy. Though this feature causes occasional inconvenience, it
prevents a variable from having its value changed by a function.

A function may accept arbitrary data structures as arguments. If a data
structure is complicated and a function is called frequently (thousands or
millions of times), implicit copying becomes a source of inefficiency. Refer-
ences bypass this problem: If a variable is passed by reference, only a pointer
need be copied.

35

A variable that is passed by reference may be altered by the calling func-
tion. This technique of updating variables is often touted as a feature in C++

texts; however, such trickery circumvents the data encapsulation of calling
by value. Passing a variable by reference so that a function can modify the
value of a variable is considered less than ideal programming practice.

Overloading

C++ provides “overloading”: Multiple functions can be given the same name,
so long as the number and/or type of their arguments differ. (It is not

enough for the return types alone to differ. The compiler must be able to
select a function from its calling syntax.) To the user, the appearance is that
a single function intelligently handles multiple argument lists. Naturally,
overloaded names should refer to functions that are conceptually related.
Overloading tends to be most useful in library code; ePiX provides numerous
plot functions, for instance.

Scope

A C++ statement ends with a semicolon. A collection of statements enclosed
by curly braces is a “code block”, and may be viewed as a single logical
statement. Curly braces determine a “scope”, inside of which variable names
may be re-used without ambiguity. A variable defined between curly braces
is said to be local (to the scope in which it is defined); its value cannot be
used out of scope.

Function bodies are code blocks, as are the alternatives associated to con-
trol statements. The compiler is not picky about spaces, tabs, and newlines,
so an input file should be organized in a way that makes the file easy to
read. Indentation signifies levels of nesting within code blocks, but specific
details are the focus of passionate debate. As with variable naming, clarity
and consistency are the important criteria.

Headers and Pre-Processing

A C++ source file is compiled in multiple stages that occur transparently to
the user. The first step, pre-processing, involves simple text replacement
for file inclusion, macro expansion and conditional compilation. Next, the
source is compiled and assembled: Human-readable language instructions

36

are parsed, then represented in assembly language. Finally, the object files
are linked: Function calls are resolved to hard-coded file offsets, possibly
involving external library files, and the program instructions are packaged
into an executable binary that the operating system can run.

Pre-processing is used much less in C++ than in C; the language itself
supports safer and more featureful alternatives to macros, such as const

variables and inline functions. File inclusion and conditional compilation are
the chief uses of the pre-processor. Lines of the form

#include <cstdlib>

#include "epix.h"

cause the contents of a header file to be read into the source file. A header
file contains variable and function declarations, statements that specify types
and names but do not define actual data. Declarations tell the compiler just
enough to resolve expressions and function calls without knowing specific
values or function definitions.

Conditional compilation is similar to conditional LATEX code, and is best
explained by example. A file might be used to produce both color and
monochrome output as follows:

//#define COLOR // uncomment for color

#ifdef COLOR

... // code for generating color figure

#else

... // monochrome code

#endif // COLOR

The “compiler symbol” COLOR is an ordinary C++ name; compilation is con-
trolled by commenting or uncommenting the #define line. Multiple decisions
on the same symbol may appear in a file. An #else block is optional, but
every #ifdef must have a matching #endif. Commenting the #endif is a
good habit; in a realistic file, the start and end of a conditional block may
be separated by more than one screen.

Comparison with LATEX Syntax

As a programming language, C++ provides certain features common to all
languages (such as LATEX, Metapost, Perl, Lisp. . .) and adheres to rules of
grammar. Salient differences between LATEX and C++ include:

37

1. Every C++ statement and function call must end with a semicolon.
An omitted semicolon may result in a cryptic error message from the
compiler. Pre-processor directives, which start with a #, do not end
with a semicolon.

2. Backslash is an escape character in C++:

// Put label $y=\sin x$ at (2,1)

// Note single ^ backslash in output

label(P(2,1), P(0,0), "$y=\\sin x$");

// Double backslash ^^ in source

3. Variable and function names may contain letters (including underscore)
and digits only, are case sensitive, and must begin with a letter.

4. Variables in C++ must have a declared type, such as int (integer) or
double (double-precision floating point). If a variable has global scope
and its value does not change, the definition should probably come in
the preamble or at the beginning of main. Local variables should be
defined in the smallest possible scope. Unlike C, C++ allows variables
to be defined where they first appear.

5. C++ requires explicit use of * to denote multiplication; juxtaposition is
not enough. C++ does not support the use of ^ for exponentiation, e.g.,
t^2 is invalid. Instead, use t*t or pow(t,2).

6. C++ has single- and multi-line comments. Everything between a dou-
ble slash and the next newline is ignored, while the strings /* and
*/ delimit multi-line comments. A single-line comment may appear
within a multi-line comment, but the compiler does not nest multi-line
comments.

Between them, C and C++ have about 100 reserved keywords which can-

not be used as function or variable names. The script keywords packaged
with ePiX is a simple lookup utility, meant to help you avoid name clashes.
To find keywords containing the string type, for example, do “keywords
type”.

38

3.2 The Camera

ePiX depicts a Cartesian world by projecting mathematically to a screen
plane, then affinely scaling to a printed page. The camera, which maps the
world to the screen, consists of a body (data that determines the position
and orientation of the camera) and a lens (the actual mapping to the screen
plane).

The Body

The camera’s spatial orientation is described by a triple of mutually perpen-
dicular unit vectors. In memory of happy days at the beach, these vectors
are called sea, sky, and eye. The screen plane is parallel to the sea-sky plane;
the sea vector points horizontally to the right, sky points vertically upward.
The eye is their cross product, which points directly at the viewer.

The sea-sky-eye basis is located at the target, so the target is the origin
of the screen plane. The viewpoint lies on the line through the target in the
direction of the eye vector, and is the center of projection for the default lens.
The distance from the viewpoint to the target is the range. The orientation,
viewpoint, target, and range completely (and redundantly) determine the
camera’s geometric situation in the world.

The Lens

The lens is a mapping from the world to the screen. ePiX comes with three
lenses: shadow (the default), fisheye, and bubble. Each lens simulates the
appearance of world objects as seen by an observer at the viewpoint. The
shadow lens is point projection from the viewpoint to the screen plane. Each
of the other lenses performs radial projection to a sphere centered at the
viewpoint, then maps the sphere to the screen plane; the fisheye lens does
orthogonal projection (so the entire image lies inside a disk, and positions
behind the camera are inverted) while the bubble lens does stereographic
projection from the point directly behind the viewpoint.

Other lenses may be defined; the file camera.cc may be consulted as a
template. Syntactically, a lens is a pair-valued function of a single P argu-
ment. To ensure expected behavior a lens should respect the meaning of the
camera body.

39

Manipulating the Camera

The camera is a C++ class, manipulated by member functions. The begin()

command initializes the camera, so all changes of camera must occur in
the body of the figure. By default, the viewpoint is at large distance on
the positive x3-axis, looking down on the (x1, x2)-plane. This provides the
expected behavior for 2-dimensional figures.

The viewpoint and target may be set individually. In general, either
operation changes the direction of the eye vector, which forces ePiX to re-
determine the sky vector. When possible, the x3-axis projects parallel to
the sky; otherwise the x2-axis is used. The viewpoint and target can be
moved along the eye axis, changing the range while preserving the orientation:
range() fixes the target, and focus() fixes the viewpoint. Each command
re-sizes the image; note that increasing the focus enlarges the image.

The camera may be rotated about any of its axes. Axes of rotation
pass through the target, so rotations about the sea or sky vectors change
the viewpoint. For best control of the camera, set the target first, then the
viewpoint. If desired, perform eye rotations last.

3.3 Clipping and Cropping

ePiX provides two masking operations to handle figure elements that lie far
from the target: clipping (in the world) and cropping (in the screen). The
“clip box” may be regarded as a set of “walls”. When clipping is active,
objects outside the walls are not visible. By default, the clip box is a large
cube centered at the origin.

The “crop box” is a rectangle in the screen plane. When cropping is
active, objects that project outside this rectangle are not visible. By default,
the crop box is the bounding box. Since the figure is drawn (on the page) by
affinely scaling the bounding box to a specified LATEX box, default cropping
ensures that a figure lies inside the printed region allocated by LATEX.

By default, clipping and cropping are off. The command clip(bool)

(de)activates clipping. The argument defaults to true. The clip box may be
set with the commands

clip_box(P pt1, P pt2); // opposite corners

clip_box(P pt); // opposite corners pt and -pt

clip_to (P pt); // pt and P(0,0,0)

40

Figure 3.1: Clipping and cropping a torus mesh (boxes added).

Analogously, cropping is (de)activted with crop(bool). The crop box is
given by a pair of opposite corners, crop box(pt1,pt2); third coordinates
are discarded. With no arguments, the command crop box() re-sets the
crop box to the bounding box.

3.4 Attributes

At a minimum, ePiX must be told how large the printed figure will be, and
how large a Cartesian rectangle to allocate. The preamble must contain
enough information to create a working state. In the body of an input file,
the “drawing state” determines the figure’s appearance. Attributes are decla-
rations, set by commands that accept arguments of the stated type, possibly
void. Color and path width are controlled by writing LATEX commands to
the output file immediately; the remaining attributes are managed internally.

• Angular mode: radians(), degrees(), or revolutions().

• Path thickness: plain(), bold(), pen(double).

• Path style:

– solid()

– dashed(double). Optional argument is the dash density, the frac-
tion (0.05–0.95) of the path taken up by dashes.

– dotted(double). Optional argument is the diameter (in pt) of a
dot.

The commands dash length(double) and dot sep(double) set the
distance (in pt) between vertices of a dashed or dotted path.

41

• Color: rgb(densities), cmyk(densities), primary(density).

• Filling: fill(bool), argument defaults to true.

– Gray depth: gray(double), 0=white, 1=black.

– PSTricks (q.v.) filling style, fill color.

• Text rotation: label angle(double)

• Clipping and cropping (q.v.)

• Camera (q.v.)

Angular Mode

ePiX has three angular modes: radians() (the default), degrees(), and
revolutions(). These modes affect all trigonometric operations, includ-
ing camera rotations, the drawing of arcs and ellipses, polar plotting, label
angle, and the trig functions themselves. Angle-sensitive trig functions are
capitalized, e.g., Cos, Tan.

Color and Shading

ePiX provides color output via the pstcol package, using the rgb and cmyk

models. Gray shading of regions is supported through eepic.sty (without
requiring pstcol). Colors are best previewed by converting the document to
Postscript or PDF. Alternatively, EPS files can be previewed in xdvi.

An rgb color is determined by three floating-point densities between 0
(no color) and 1 (full saturation). A cmyk color is similarly specified by four
floats. Densities outside the range [0, 1] are “clipped”. Like line style, a
color remains in effect until superseded. Seven primary colors and white are
available by name. (Drawing in white can be used like correction fluid to
remove pieces of a figure accurately.)

red(); // rgb(1,0,0);

magenta(0.6); // cmyk(0,0.6,0,0);

rgb(0.2,0.7,0.8); // custom color

42

PSTricks

PSTricks is a powerful collection of macros, by Timothy van Zandt [5] and
others, for incorporating PostScript in LATEX. ePiX uses PSTricks primarily
for color filling, but does not yet work seamlessly. PSTricks should be used
in a file only when absolutely necessary. The discussion below assumes

PSTricks is needed in the file. The command

use_pstricks(bool);

sets an internal flag that determines whether a path is drawn as an eepic

path or as a PSTricks psline. When issued before begin(), this command
also synchronizes the PSTricks unitlength and line width with ePiX, and
sets the fill style to solid. PSTricks may be activated and deactivated freely,
but the first activation must occur in the preamble.

While pstricks is active, commands of the form

fill_color("<color name>");

psset("<pstricks command>");

are used to set attributes such as the style and color of paths and filling.
The default fill color is "white". This snippet, taken from the sample file
contour.xp, shows how to define a new color and use psset().

use_pstricks(); // synchronize length, etc.

begin();

use_pstricks(false); // temporarily disable

...

std::cout << "\n\\newrgbcolor{orange}{1 0.7 0.2}";

psset("fillcolor=orange, linecolor=green, linewidth=1.5pt");

The PSTricks manual should be consulted for information.
Two major incompatibilities involve and filling and color. Unless the fill

style is set explicitly to none, PSTricks fills all paths, even if they are not
closed. Second, PSTricks manipulates colors by named strings, so raw output
is required to exploit the full power of PSTricks from ePiX.

3.5 The Path Class

A path data structure is ePiX’s low-level ordered list of points that can be
cropped, clipped, mapped, concatenated, and drawn. Raw path data is useful
for complicated paths built in pieces. Available constructors are:

43

path(p1, p2); // line (endpoints)

path(p1, p2, p3); // quadratic spline

path(p1, p2, p3, p4); // cubic spline

path(p1, v1, v2, t_min, t_max); // cf. ellipse arc

path(f, t_min, t_max); // graph or parametrized path

polyline(n, &p1, ...); // n points, followed by pointers

polygon(n, &p1, ...); // same, but marked as closed

The first argument of the parametrized path constructor is a real- or vector-
valued function of one variable. In each of the first five constructors, an
optional final argument may be supplied to specify the number of points
used.

The polyline and polygon constructors accept an unknown number of
arguments; consequently, their arguments must be passed as “pointers”, or
memory addresses:

polyline(2, P(0,0), P(1,1)); // wrong; object arguments

P p1 = P(0,0), p2=P(1,1);

polyline(2, &p1, &p2); // right; pointer arguments

This makes polylines and polygons inconvenient for quick-and-dirty use, but
imposes little burden if the vertices have been defined elewhere, as they might
be in a logically structured file.

Compound paths may be built by concatenation. If path1 and path2 are
paths, then the commands

path1 += path2;

path1 -= path2;

replace path1 with the result of traversing path1 “forward”, then follow-
ing path2 in the forward or reverse direction (respectively). The nota-
tion is meant to suggest 1-dimensional homology chains. The sample file
contour.xp illustrates path creation and manipulation. Finally, note that
a path is a data structure, not a drawing command. The path::draw()

function must be called explicitly to create visible output.

44

Path-Like Objects

Path-like objects comprise polygons with a fixed number of vertices (lines,
triangles, quadrilaterals) and objects built from them (including coordinate
axes, grids, and arrows); curves with a variable number of points (ellipses,
arcs, splines); and plots of functions of one variable.

Fixed-data polygons are drawn with high-level commands.

line(p1, p2);

triangle(p1, p2, p3);

quad(p1, p2, p3, p4);

rect(p1, p2); // coordinate rectangle

spline(p1, p2, p3); // quad spline with control pts

spline(p1, p2, p3, p4); // cubic spline

A line() accepts an optional numerical argument that acts as an expansion
parameter: line(p1,p2,t); draws a segment with midpoint at the midpoint
of p1 and p2, but having length scaled by 2t/100. (That is, t = 100 doubles
the length, while t = −100 halves the length.) The arguments of rect()

must lie in a plane parallel to a coordinate plane.
Internally, ePiX marks paths as closed or not; triangles, quadrilaterals,

polygons, ellipses, and arrows are closed. If a solid, closed path is drawn
while filling is active, the path is filled with the current shade of gray. If
filling is deactivated, the path is drawn but not filled. Dashed and dotted
paths cannot be filled in one step; instead, fill the solid path, then draw the
dashed/dotted boundary.

The shade of gray is a number between 0 (white) and 1 (black), and de-
faults to 0.3. Shading is opaque in PostScript, so the order of figure elements
is significant in the input file when filling is active.

Color filling is available only through PSTricks. The features of PSTricks
that are relatively well-supported in ePiX are illustrated in the sample file
contour.xp. In principle, any PSTricks features can be obtained through raw
output. However, this approach is generally discouraged since, for example,
PSTricks color declarations are not recognized by eepic, and vice-versa. The
Next Generation of ePiX will work more seamlessly with PSTricks.

Elliptical arcs are specified by their center, a pair of vectors, an angular
range, and an optional number of points:

ellipse(ctr, v1, v2, t_min, t_max, n);

45

uses n + 1 points to draw the parametrized path

t 7→ ctr + (cos t)v1 + (sin t)v2, tmin ≤ t ≤ tmax

If omitted, the number of points defaults to 80 for a full turn, with propor-
tionally fewer points for an arc. When the angular range subtends one or
more full turns, the ellipse is marked as closed, and will be filled if filling is
active.

The circular arc parallel to the (x1, x2)-plane, having center p1 and ra-
dius r, and subtending the angle (counterclockwise, in current angle units)
from θ1 to θ2 is drawn with

arc(p1, r, theta1, theta2);

arc_arrow(p1, r, theta1, theta2); // same, with arrowhead

If θ2 is smaller, the arc goes clockwise. The arrowhead goes at θ2. If an
arc arrow is too short, nothing is drawn.

3.6 Geometric Data Structures

Figure elements have an abstract description and a typographical appear-
ance. This section describes the former. ePiX provides classes, P, segment,
circle, plane, and sphere, that can be used for Euclidean geometry con-
structions. Each class is specified by a small amount of data (e.g., a center,
radius, and unit normal vector for a circle) and provides constructors, in-
tersection operators, affine transformations, and a draw() function.

ePiX also provides features for spherical and hyperbolic geometry, espe-
cially the ability to draw lines in the half-plane and Poincaré disk models
of the hyperbolic plane, and to draw latitudes, longitudes, and parametrized
curves on a sphere.

Triples and Frames

Points and displacements in space are represented as ordered triples. The
name of the type is “P”, though “triple” may be used for backward compat-
ibility. Spherical and cylindrical/polar constructors are provided. Standard
(and non-standard) algebraic operations—addition/subtraction, scalar mul-
tiplication; dot, cross, and componentwise products, and orthogonalization—
can be performed on triples. When forming symbolic expressions involving

46

triples, scalars must be collected together at left, triples at right. If necessary,
use parentheses to force a particular association.

P pt(x,y,z); // define pt = (x,y,z)

double u=pt.x1(); // first coordinate of pt, etc.

P(x,y); // same as P(x, y, 0);

polar(r, theta);

cis(t); // polar(1, t), aka Cos(t) + i*Sin(t)

sph(r, theta, phi); // theta=longitude, phi=latitude

P(a,b,c)|P(x,y,z); // dot product, ax+by+cz

P(a,b,c)&P(x,y,z); // componentwise product, P(ax,by,cz)

p*q; // cross product, p x q

J(p); // quarter turn about the x3-axis

p%q; // orthogonalization, p (mod q)

Explicitly, p%q is the unique vector p+k*q that is perpendicular to q.
A frame is a set of three mutually perpendicular unit vectors. The stan-

dard frame is the set E 1, E 2, E 3. The constructor turns three non-coplanar
vectors into a frame:

frame(); // the standard frame

frame(P v1, P v2, P v3); // orthonormalize (v1, v2, v3)

The third vector of the new frame is positively proportional to v3, the second
vector is positively proportional to v2%v3, and the first vector is the cross
product. Thus, a frame is right-handed, and does not depend on v1.

Intersection

The concept of genericity is central to understanding intersections of geo-
metric data structures in ePiX. For a working definition, two objects that
are disjoint, tangent, or coincident intersect “non-generically”. (Geometers
will note that this differs substantially from the usual definition.) ePiX’s
intersection operators throw exceptions when the operands are non-generic.
If a run of epix terminates with an error message, check that you are not
trying to intersect badly-formed or situated objects.

In ePiX, a segment is extended into a line for purposes of intersecting.
Table 3.1 lists types of (generic!) intersections in ePiX. Intersection is com-
mutative, so only the top half of the table is shown. Not all intersections are
defined.

47

* segment circle plane sphere

segment P segment P —
circle segment segment —
plane line circle

sphere circle

Table 3.1: ePiX’s intersection types.

Segments

A segment is an unordered pair of points. A segment may be translated by
a P, and the midpoint taken:

segment L1 = segment(P(0,0), P(2,4));

P mid = L1.midpoint();

segment L2(mid, P(-2,3)); // form segment

L2 += P(1,0); // translate L2 by (1,0)

L1.draw(); L2.draw();

dot(L1*L2); // point of intersection

Circles

A circle data structure consists of a center, radius, and a perpendicular
unit vector. Three constructors are provided:

circle(P center, double radius, P normal);

circle(P center, P point);

circle(P p1, P p2, P p3);

Unspecified trailing arguments in the first constructor take the following
defaults: If normal is not given, it is set to E 3; if in addition, the radius is
unspecified, it is unity; finally, the center is the origin if no arguments are
supplied. As usual in C++, only trailing arguments may be left implicit; the
call circle(center, normal) does not create a unit circle with the given
center and normal.

The second creates a circle parallel to the (x1, x2)-plane with the given
center and passing through the given point. The third returns the circle

passing through the given points. Exceptions are thrown if the center and

48

point do not lie in a plane parallel to the (x1, x2) plane, or if the three
points pi are collinear.

A circle may be translated by a P with the + operator, or scaled by a
double using the ∗ operator:

circle C1=circle(); // unit circle

circle C2 = C1+P(1,0.5); // translate up and right

C2 *= 1.5; // multiply radius by 1.5

C1.draw(); C2.draw(); // view handiwork

(C1*C2).draw(); // draw segment of intersection

Spheres

A sphere is specified by a point and a radius, by default the origin and
unity. Constructors are provided for a sphere of specified center that passes
through a given point, and for a sphere given by a pair of antipodes:

sphere(center, point);

poles(north, south);

As for circles, translation and scaling operators are provided. Capabilities
specific to geography and spherical geometry are described in Section 3.8.

The draw() function of a sphere draws the horizon visible from the
current viewpoint. While this horizon is a circle in object space, its image
in the screen plane is generally an ellipse. Further, antipodal points are not
generally mapped to points that are symmetrically placed with respect to the
center of this ellipse. These effects are most pronounced when the viewpoint
is close to the sphere and the center is not close to the target.

Lines and Planes

ePiX does not have a separate data structure for lines, but it does provide a
function, Line, that draws the line joining a pair of points. Naturally, only a
segment can be drawn. ePiX always crops a Line, and in addition removes
the half-line that lies behind the observer. Thus, a Line appears as a printed
segment, either with ends on the bounding box, or with at most one end in
the interior, representing a point on a visible horizon. The Next Generation
(a.k.a. ePiX3d or “Version 2.x”) will supply a line data structure.

49

A plane is specified by a point and a unit normal vector, or by three
non-collinear points. The draw() function renders the lines of intersection
of the plane with the faces of the clip box. Unless the clip box has been set
manually, these lines of intersection will almost surely avoid the bounding
box, and therefore be invisible.

3.7 Domains and Plotting

To fix terminology, the noun “map” will be used for a C++ function that
accepts one or more double arguments or a P argument, and returns a
double or a P. Maps can be depicted in two mathematically useful ways:
graphing (which retains information about the domain), and drawing the
image as a parametrized curve or surface (which discards domain informa-
tion). Usually, a double-valued map is graphed, while a P-valued map is
viewed parametrically. The verb “plot” is used generically to mean either
sort of depiction, and the noun “plot” refers to the result of plotting.

The “domain” of a map is the set of allowed input values. In ePiX, a
domain is a coordinate box of dimension one, two, or three. For uniformity,
a 2-dimensional domain is actually a 3-dimensional domain whose “thick-
ness” along the x3-axis is 0. Similarly, a 1-dimensional domain is a “highly
degenerate” 3-dimensional domain. Domains facilitate the plotting of fam-
ilies of mappings, and the selective plotting of parts of a mapping; domain
operators for these purposes are described below.

A plot depends on a map and a domain. For example, suppose f is a P-
valued map of two (double) variables, and R is a two-dimensional domain. To
construct a plot, subdivide R with a “coarse” rectangular mesh, say having
m1 × m2 sub-rectangles. For each “grid line”, plot the parametric curve
obtained by evaluating f along the line. The result is the (wiremesh) plot
of f over R.

A detail was omitted in the preceding paragraph: the number of points
plotted in each parametric curve. Many graphing programs use as many
points as dictated by the coarse mesh, so that the surface is made of quadri-
laterals (Figure 3.2, left). In ePiX, a domain possesses a “fine” mesh, say
that divides R into n1 × n2 subrectangles (Figure 3.2, right). The individual
parametric curves comprising the surface are drawn using the fine subdi-
visions. A plot can conform to the “true” surface without requiring many
quadrilaterals.

50

Figure 3.2: A surface with coarse (6 × 18) and fine (12 × 60) meshes.

A domain is defined by giving a pair of opposite corners, the coarse mesh,
and the fine mesh. A domain’s meshes are independent; the fine mesh need
not be a “multiple” of the coarse mesh. Indeed, the “fine” mesh may be more

coarse than the “coarse” mesh. Usually, however, the fine mesh is a “small
multiple” of the coarse mesh.

A domain can be resized in any coordinate direction for which the thick-
ness is positive, using object-oriented syntax. For the domain R above,

domain R_new = R.resize2(0.5,0.75);

defines a new domain having opposite corners (0, 0.5) and (1, 0.75). To the
extent possible, resizing attempts to preserve absolute grid sizes. In this
example, the new domain has 6 × 4 coarse mesh (18/4 = 4.5 → 4) and
12× 15 fine mesh. It’s best to choose meshes so that resizing does not cause
integer truncation.

A domain can be sliced by setting one variable to a constant; the result
is a domain whose dimension is one smaller than the original:

domain R1 = R.slice1(0.3);

creates the 1-dimensional domain with endpoints (0.3, 0) and (0.3, 1), and
having coarse mesh 18 and fine mesh 60. Resizing and slicing commands
may be used directly in a plot command:

plot(f, R.slice1(0.3));

51

draws the parametric curve obtained by slicing R at x1 = 0.3, then applying f.
For plotting families of maps, a domain has “slices” operators that

return the list of domain slices obtained by setting one variable to components
of the coarse mesh:

R R.slices1() R.slices2()
When plotting a function of one variable, constructing a domain is possi-

ble but tedious. The command

plot(f, t_min, t_max, n);

plots f over the interval [t min, t max] using n subintervals (n+1 points).
The ability to slice or resize makes domains more useful when plotting

functions of two or three variables. The commands below typify plot com-
mands; f is a function of one variable, and F is a function of 2 or 3 variables.
If the function is real-valued, the graph is drawn; otherwise the image is
drawn.

// two ways to plot F on [a,b] x [c,d]

plot(F, P(a,c), P(b,d), mesh(N1,N2), mesh(n1,n2));

domain R(P(a,c), P(b,d), mesh(N1,N2), mesh(n1,n2));

plot(F, R);

plot(F, R.slice1(a)); // plot F on part of the boundary

plot(F, R.slices1()); // plot F over all slices x1=const

A function of 3 variables can be plotted over a 1- or 2-dimensional domain,
while a function of 2 variables cannot be plotted over a 3-dimensional domain.

Utility Functions

In this section, f and g are double-valued functions of one variable. ePiX

defines numerical functions that return the maximum or minimum value on
an interval, approximate the location of roots, and perform calculations with
derivatives and definite integrals.

52

sup(f, a, b); // max/min of f on [a,b]

inf(f, a, b);

newton(f, g, x0); // find approximate crossing point

Newton’s method returns the crossing point of the given functions, starting
from the specified seed. If a critical point is hit or 20 iterations pass, a
warning is issued and the current result (probably incorrect) is returned.
The second function g defaults to the zero function if omitted.

The classes D and I are used to calculate values of derivatives and inte-
grals, and to plot these functions.

D df=D(f); // data structure representing the derivative

df.eval(t); // return f’(t)

df.left(t); // deriv from left at t: (f(t)-f(t-dt))/dt

df.right(t); // deriv from right at t: (f(t+dt)-f(t))/dt

I prim=I(f,a); // representation of the integral from a

prim.eval(b); // numerical integral of f over [a,b]

double val=I(f).eval(1); // \int_0^1 f

The lower limit on an integral is 0 by default.
Tangent lines and envelopes (families of tangent lines) are drawn with

tan_line(f, t); // f real- or vector-valued

envelope(f, t_min, t_max, n); // family of tangent lines

tan_field(f1, f2, t_min, t_max, n); // field of tangents

The sample files conic.xp and lissajous.xp illustrate these features.

Calculus Plotting

ePiX can plot the derivative or definite integral of real-valued functions, solve
ODEs in two or three variables, and graph slope- or vector fields. Let f be
a real-valued function of one variable, F a P-valued function of two or three
variables.

plot(D(f), a, b, n); // plot f’ over [a,b]

plot(I(f, x0), a, b, n);

ode_plot(F, p_0, t_min, t_max, n);

flow(F, p_0, t_max, n);

53

The second command graphs the definite integral x 7→
∫ x

x0

f(t) dt over [a, b].
As above, x0 defaults to 0.

The third command plots the solution curve of the initial-value problem
ẋ = F (x), x(0) = p0, over the specified time interval. If tmin is omitted, its
value is 0, so the curve starts at p0. With manual calculation to rotate a pla-
nar field a quarter turn, ode plot can be used to draw level curves (isobars)
of a function; see the sample file dipole.xp. The fourth command returns
the result of starting at p0 and flowing by F for time tmax, using Euler’s
method with n timesteps. This is useful for placing markers or arrowheads
precisely along a flow line. A vector field itself may be drawn in three ways:

vector_field(F, p, q, n1, n2); // proportional length

dart_field (F, p, q, n1, n2); // constant length

slope_field (F, p, q, n1, n2); // directionless, const length

The field is sampled at the grid points of the coordinate rectangle whose
corners are specified.

Recursive Fractal Curves

Consider a path made up of equal-length segments that can point at any angle
of the form 2πk/n radians, for 0 ≤ k < n, like spokes on a wheel. A path
is specified by a finite sequence of integers, taken modulo n. For example,
if n = 6, then the sequence 0, 1,−1, 0 corresponds to the ASCII path _/_.
ePiX’s fractal approximation starts with such a “seed” then recursively (up
to a specified depth) replaces each segment with a scaled and rotated copy of
the seed. The seed above generates the standard von Koch snowflake fractal.
In code:

const int seed[] = {6, 4, 0, 1, -1, 0};

fractal(P(a,b), P(c,d), depth, seed);

The first entry of seed[] (here 6) is the number of “spokes” n, the second (4)
is the number of terms in the seed, and the remaining entries are the seed
proper. The final path joins (a, b) to (c, d). The number of segments in the
final path grows exponentially in the depth, so depths larger than 5 or 6 are
likely to exceed the capabilities of LATEX and/or PostScript.

54

Figure 3.3: Successive iterations of {4,8,0,1,0,3,3,0,1,0}

3.8 Non-Euclidean Geometry

Hyperbolic line segments are specified by their endpoints in the upper half
space or ball (Poincaré) models. In each case there is no output if either
endpoint lies outside the model.

hyperbolic_line(p, q);

disk_line(p, q);

For compatibility with 2-dimensional hyperbolic space, the half-space model
is the set {(x1, x2, x3) | x2 > 0}.

A frame determines geographical coordinates on a sphere: the first ele-
ment points toward longitude 0 on the equator, the third element points to
the north pole. A latitude line depends on a sphere, a frame, the numerical
latitude, and a range of longitudes. A longitude line is described similarly.

latitude(lat, long_min,long_max, sphere S, frame coords);

longitude(lngtd, lat_min, lat_max, sphere S, frame coords);

By default, coords is the standard frame and S is the unit sphere. These
commands draw only the portion of the curve that is visible from the current
viewpoint. The function back latitude draws the invisible portion of a
latitude line.

Parametrized paths on the unit sphere can be specified either by radial
projection of a space curve, or by stereographic projection of a plane curve:

plot_R(phi, t_min, t_max, n); // radial

plot_N(f1, f2, t_min, t_max, n); // from north pole

plot_S(f1, f2, t_min, t_max, n); // from south pole

Attempts to perform radial projection on a path through the origin will gen-
erate division-by-zero errors. Stereographic projection maps the equatorial
plane {x3 = 0} to the unit sphere by projection from the corresponding pole:
N = (0, 0, 1), S = (0, 0,−1).

55

Each spherical plot command accepts a prefix front or back that prints
only the portion of the path visible or invisible (respectively) from the current
viewpoint.

Because of the way ePiX layers output, it is generally best to put hidden
portions of the input before visible portions, with line width and/or style
that suggests hidden lines.

3.9 Animation

ePiX is ideally suited to the creation of mathematically accurate animations:
If a figure depends suitably upon a “time” parameter, then a loop can be
used to draw the entire figure for multiple time values, yielding successive
“snapshots” of the figure as time progresses. The shell script flix automates
the process of compiling a suitable input file into a collection of pngs and
assembling these frames into a mng animation. ImageMagick is the image-
handling engine.

A flix file is an epix file with two restrictions:

• The double variable tix is used as “clock”.

• main accepts two commandline arguments and sets tix accordingly.

Jay Belanger’s emacs mode recognizes the file extension .flx and inserts
template code if an empty buffer is opened. Creation of flix files is as easy
as creation of epix files. The directory samples/extras contains a handful
of flix files that may be consulted for ideas.

A “typical” .flx file may take 30 seconds to a couple of minutes to
compile. To present the impression that work is being done, flix prints a
progress bar, counting the number of eps files that have been created. There
will be a delay of a few seconds after the last frame is produced, during
which ImageMagick’s convert utility creates png files from eps files, then
assembles the movie.

To facilitate debugging, elaps can be run on a flix file. elaps runs in a
fraction of the time, and if elaps can’t produce a viewable image, flix will
surely fail.

By default, flix creates movies with 24 frames, in which tix runs from 0
to 1, and animates at 0.08 sec/frame. Command-line options change these
and other parameters; please use flix’s built-in help for details.

56

3.10 Troubleshooting

Seven files comprise ePiX: a header (epix.h), compiled library (libepix.a),
and five shell scripts (epix, elaps, laps, flix, and keywords). Four of these
files are generated at compile time, using variables found in the Makefile.
In addition to the executable portions of the program, there are a few dozen
sample files, configuration files, READMEs, and miscellaneous documentation.
These components are placed into standard locations where they can find
each other.

Installation Problems

Public installation (in /usr/local) is the default. Unpack the tar file, then
cd to the source directory (epix-x.y.z complete). If you are installing in
/usr/local, your C++ compiler is g++, and bash is in /bin/bash, then do

make

make contrib (optional)

make test (optional)

make install

(the last as root, if necessary). If bash is not in /bin/bash, edit the script
newbash.sh and run it in the source directory. If the install directory or
compiler are not as above, edit the Makefile accordingly, then build. If
a failed partial compile creates the header file epix.h, you must do make

clean before re-compiling.
If you have installed in $HOME, please see the POST-INSTALL file for addi-

tional instructions.
The directory in which you install ePiX is denoted $INSTALL. A successful

make install creates the following files:

$INSTALL/bin/{epix,elaps,laps,flix,keywords}

$INSTALL/include/epix.h

$INSTALL/lib/libepix.a

$INSTALL/man/man1/epix.1

Sample files, notes and README files, configuration snippets, and (if the
complete package is installed) this tutorial are installed in subdirectories of
$INSTALL/share/epix.

57

Known Issues

If you install ePiX on MacOS X with the December, 2002 Apple Developer
Tools, you must manually run ranlib on the compiled library:

sudo ranlib /usr/local/lib/libepix.a

Buggy versions of the conversion script ps2epsi have been distributed
with recent versions of RedHat and Mandrake. The author has seen two
different one-byte errors that cause elaps to fail with a sed error. If elaps
generates a sed error, you have a buggy ps2epsi. Please google for the
specific error message or, if you’re good with regular expressions, just fix
the script yourself. (In both prior instances, the problem was an unescaped
special character.)

Runtime Errors

Typos frequently cause errors when epix is run; the compiler generally issues
a helpful message, naming the troublesome line of the input file and the type
of error.

Two common sources of error in a syntactically correct input file are
camera mis-placement and non-generic intersections. If the camera is too
close to objects in the scene, the lens may try to divide by zero (or by a small
epsilon), resulting in nan errors (or very large coordinates) in the output file.
In this situation, epix will succeed, but elaps will hang. By contrast, an
error message of the form

/usr/local/bin/epix: line 275: 27333 Aborted ...

signifies an uncaught exception, hence a non-generic intersection.
Though the shell scripts are extensively tested, they are a possible source

of runtime problems. (For example, elaps tries to pass options to the com-
piler while reserving other options for its own use, all while trying to deal
intelligently with malformed commands.) If a script does something unex-
pected, it’s probably a Feature, not a Bug. In any case, please notify the
author of anomalous behavior.

Hanging scripts By default, the conversion scripts run silently. Because
LATEX does not use separate channels to return output and error messages,
laps can hang if there is a problem with the LATEX file. If this happens, try

58

typing “s” to put LATEX into scroll mode. If this fails to return the prompt
after a few seconds, type <ctrl>-C to kill laps, and re-run in verbose mode:

laps -vv <filename>

This will cause LATEX’s error messages to be printed normally.

Command not found In order to use ePiX, the directory $INSTALL/bin

must be in your PATH (see POST-INSTALL); type
echo $PATH

to see your PATH. If the directory $INSTALL/bin/ is not in your PATH, please
read POST-INSTALL or ask someone knowledgeable at your site for help; the
procedure varies depending on what shell you use. In any case, you will need
to modify your shell’s configuration file.

Permission denied This is unlikely, but conceivable. For each component
of the program, do a long listing, e.g. (with the appropriate install directory)

ls -l /usr/local/bin/epix

The header and library must be readable, and the shell scripts and directories
must be readable and executable. From the install directory, do

chmod 0755 bin include lib bin/{epix,elaps,laps,flix,keywords}

chmod 0644 include/epix.h lib/libepix.a man/man1/epix.1

If you still cannot get ePiX to run, please send email to the author. Gen-
erally, it is helpful to specify the operating system (e.g., RedHat 8.2, or De-
bian Potato on a G4 Powerbook), the version of the C compiler (e.g. gcc-3.2),
the version of ePiX, and where you downloaded the sources (CTAN, the
project home page, etc.). Specific commands you typed and error messages
may also be helpful. If you don’t know what an error message means, feel
free to paste or attach it to your email as plain text. The author does not
have access to an enormous variety of systems, and sometimes reported errors
never get explained, but to date no error has failed to be worked around.

LATEX Errors

A few things can cause LATEX to stop with an error message when reading an
eepic file written by ePiX. The most common is the appearance of nan (not

59

a number) where LATEX expects a number. This generally indicates division
by zero or bad exponentiation.

When a number is very small, ePiX may write it in exponential notation.
If this happens, LATEX will pause with an error message when it tries to read,
e.g., 1.4142135e-14. This bug has been addressed; please send the author
a bug report if you encounter this behavior in ePiX code. You can manually
edit the eepic file, replacing underflows with 0. In this eventuality, it’s wise
to rename the edited file, lest ePiX overwrite your changes the next time you
run it.

Overflow errors in LATEX are possible if a point has coordinates larger
than 216; make sure you’re not trying to plot the graph of a pole or something
similar.

60

Chapter 4

Advanced Topics

This chapter covers ad hoc tricks and open-ended techniques that require
relatively more programming sophistication. You will almost surely need an
external C++ reference if you do not speak the language.

4.1 Hidden Object Removal

ePiX writes the output file in the same order that objects appear in the input.
The order is significant because PostScript builds a figure in layers: Objects
are drawn over objects that come earlier in the file. Shaded polygons can be
used to obtain surprisingly effective hidden object removal in surface meshes.
The techniques are still provisional, however; this section describes a method
that works for the author, though is not sufficiently refined for inclusion in
the source code.

The basic idea is to create a shaded quadrilateral class that knows its
distance to the camera. To draw parametrized surfaces, quadrilaterals are
written in any convenient order to a C++ vector, then sorted by distance to
the camera and printed to the output file in decreasing order of distance. The
gray density of a mesh element depends on the cosine of the angle between the
normal vector and the vector from the camera to the element. The method
works acceptably well in practice: Several surfaces can be drawn, and the
effect is fairly realistic. If the surface meshes are fine enough, intersections
are accurate and not jagged. However, the output file tends to be enormous,
and is not effectively human-readable.

The quadrilateral class might look like this:

61

class mesh_quad

{

private:

P pt1, pt2, pt3, pt4;

double distance;

public:

mesh_quad()

{

pt1=pt2=pt3=pt4=P();

distance=camera.get_range();

}

mesh_quad(P f(double u, double v), double u0, double v0)

{

pt1=f(u0+EPS,v0+EPS); // EPS = "shrinkage"

pt2=f(u0+du-EPS,v0+EPS);

pt3=f(u0+du-EPS,v0+dv-EPS);

pt4=f(u0+EPS,v0+dv-EPS);

P center = 0.25*(pt1 + pt2 + pt3 + pt4);

distance = norm(center-camera.get_viewpt());

}

double how_far() const { return distance; }

void draw()

{

P normal = (pt2 - pt1)*(pt4 - pt1);

normal *= 1/norm(normal);

double dens = 0.75*(1-pow(normal|LIGHT, 2)/(LIGHT|LIGHT));

gray(dens);

quad(pt1, pt2, pt3, pt4);

}

};

To utilize C++’s sorting algorithm, a class is defined to measure the distance
to a mesh element:

class by_distance {

public:

bool operator() (const mesh_quad& arg1, const mesh_quad& arg2)

{ return arg1.how_far() > arg2.how_far(); }

};

62

Assuming f1 and f2 are parametric surface maps, the class above can be
used as follows in the body of the figure:

std::vector<mesh_quad> mesh(0); // list of mesh_quads

for (int i=0; i<N1; ++i)

for (int j=0; j<N2; ++j)

{

mesh.push_back(mesh_quad(f1, -1+du*i, -1+dv*j));

mesh.push_back(mesh_quad(f2, -1+du*i, -1+dv*j));

}

sort(mesh.begin(), mesh.end(), by_distance());

for (unsigned int i=0; i<mesh.size(); ++i)

mesh.at(i).draw();

For a complete file, please see samples/extras/tori.xp.

4.2 Extensions

Thanks to a suggestion of Andrew Sterian, ePiX is extensible. The preferred
method is to create external modules for use at run time, analogous to a LATEX
macro/style file. It is also possible to modify the ePiX source code itself
before compiling; this is inflexible (and requires administrator privileges),
but can be useful for changing system-wide defaults. User extensions span
a spectrum, from header files that require only basic knowledge of C++ to
separately compiled libraries that substantially extend the capabilities of
ePiX.

Header Files

A C++ header file conventionally has suffix .h, as in myheader.h. To use this
custom header, put a line #include "myheader.h" in your source file.

User definitions can be easily and robustly implemented with “inline func-
tions”. Inline functions are superficially similar to macros, but are far more
safe and featureful (since they are handled by the compiler rather than by
the pre-processor). Examples are

inline void Bold(void) { pen(1.5); }

inline void purple(void) { rgb(0.5, 0, 0.7); }

63

inline void draw_square(double s) { rect(P(-s,-s),P(s,s)); }

inline double cube(double x) { return x*x*x; }

The keyword void signifies a function that does not return a value, or (when
used as a parameter) a function that does not accept arguments. Inline
function definitions are syntactically exactly like ordinary function defini-
tions, but must occur in a header file or in the source file where they are
used. The examples above might be used in an input file as follows:

Bold();

draw_square(cube(1.25));

Compiling

The next few sections outline the creation of a “static library” on GNU/Linux,
and explain how to incorporate custom features at runtime. For more details,
the source code, Makefile, and your system’s documentation should provide
a good start.

A small library is usually written as a header file, which contains function
declarations (also called “prototypes”), and a source file, which contains the
actual code. Conventionally (under *nix), these files have extension .h and
.cc respectively. Header and source files may “include” other header files,
to incorporate additional functionality.

/* my_code.h */

#ifndef MY_CODE

#define MY_CODE

#include <cmath> // standard library math header

#include "epix.h" // ePiX header

using ePiX::P;

namespace Mine { // to avoid name conflicts

// functions for special relativity

double lorentz_norm(P);

bool spacelike(P);

} // end of namespace

#endif // MY_CODE

This file exhibits two “safety features”. The three MY CODE lines prevent
the file from being included multiple times. In a file of this size, inclusion

64

protection is overkill, but as your code base grows and the number of header
files increases, this protection is essential. Second, the header introduces a
“Mine” namespace. Inside this namespace, two functions are declared as
prototypes, giving the function’s return type, name, and argument type(s).
A header file should be commented fairly liberally, so that a year or two from
now you’ll be able to decipher the file’s contents. For a longer file, version
and contact information, an overall comment describing the file’s features,
and license information are appropriate.

Next, the corresponding source file; definitions are also placed into the
namespace, and must match their prototypes from the header file exactly.

/* my_code.cc */

#include "my_code.h"

using namespace ePiX;

namespace Mine {

double lorentz_norm(P arg)

{

double x=arg.x1(), y=arg.x2(), z=arg.x3(); // extract coords

return -x*x + y*y + z*z;

}

bool spacelike(P arg)

{

return (lorentz_norm(arg) > 0); // true if inequality is

}

} // end of namespace

Copies of these files are included with the source code so you can experi-
ment with them. Next, the source file must be “compiled”, “archived”, and
“indexed”. In the commands below, the percent sign is the prompt.

% g++ -c my_code.cc

% ar -ru libcustom.a my_code.o

% ranlib libcustom.a

Please see your system documentation for details on command options and
what each step does. For linking (below), the name of the library file must
begin “lib” and have the extension .a. Once these steps are successfully
completed, put the library libcustom.a and header file my code.h in your
project directory. You’re ready to use the code in an ePiX figure.

65

Runtime Linking

The script epix allows input files to be linked with external libraries at run
time, when the input file is compiled into a temporary executable.

epix recognizes command line options and passes them verbatim to the
compiler. The most commonly used options are those of the form

-I<include> -L<libdir> -l<lib>

There must be no space between the option flags -I, -L, and -l and their
arguments. For example, to link figure.xp against mylibs/libcustom.a,
run the command

epix -Lmylibs -lcustom figure

The options -I. -L. tell the compiler to look in the current directory for
header and library files. Compiler options may appear in any order, but must
come before the name of the input file; options that come after the input file
are silently discarded.

Compiler options may be placed in the configuration file $HOME/.epixrc,
with syntax as above. A line in the config file that contains a pound sign (#)
is a comment, no matter where in the line the # appears. If any non-
comment line fails to start with a dash, the rest of the file is silently discarded.
Command-line options are read before the config file.

66

Appendix A

Software Freedom

Academics in general, and mathematicians in particular, depend on Free
software in their work. A good case can be made that proprietary software is
contrary to the academic ethic. Issues of access aside, if one does not know
what exactly went into a program, then one cannot fully trust the results that
come out, any more than one can trust (for purposes of scientific publication)
results of a commercial testing lab. Access to the source code is not all that is
required, though. To promote the dissemination of information, users should
be granted the four freedoms laid out in the GNU General Public License:

Free0: To run a program for any purpose
Free1: To study how the program works, and adapt it to your needs
Free2: To redistribute copies of the program
Free3: To improve the program, and release improvements to the public
Just as theorems are not restrictively licensed, I believe that software we

use in our academic work should be licensed in a way that encourages open-
ness and sharing. Releasing software under a standard commercial license
agreement is (to me) the equivalent of publishing the statement of a theo-
rem, while keeping the proof secret, and charging people for each citation of
the theorem. Releasing source code alone, without giving users the freedom
to modify it for their own needs, is analogous to publishing a proof, but
forbidding readers from using the ideas of the proof in their own work.

The ultimate purpose of software is to allow us to be productive and
creative. I hope that this modest program is, in conjunction with the much
larger efforts of others (especially Donald Knuth, Richard Stallman, and
the many people who have contributed to the authorship of LATEX and its
packages), useful to you in your mathematical work.

67

Please visit the Free Software Foundation, at http://www.fsf.org, to
learn more about Free Software and how you can contribute to its develop-
ment and adoption.

68

Appendix B

Acknowledgements

ePiX is built on the work of many people (unfortunately, most of whom I am
unaware). The following people have contributed, sometimes unknowingly
but always generously:

Infrastructure Donald E. Knuth, Conrad Kwok, Leslie Lamport, Tim
Morgan, Piet van Oostrum, Sunil Podar, Richard Stallman

Enhancements Jay Belanger, Robin Blume-Kohout, Guido Gonzato, Svend
Daug̊ard Pedersen, Andrew Sterian

Debugging, advice, and other assistance Jay Belanger, Felipe Paulo
Guazzi Bergo, Robin Blume-Kohout, Patrick Cousot, Stephen Gibson, Dov
Grobgeld, Bob Grover, Jim Hefferon, Jacques L’helgoual, Yvon Henel, Hart-
mut Henkel, Herng-Jeng Jou, Walter Kehowski, Ross Moore, Thorsten Riess,
Neel Smith, Michael Somos, Andrew Sterian, Ryszard Tanas, Kai Truken-
mueller, Torbjorn Vik, Wenguang Wang, Gabe Weaver, Mariusz Wodzicki

69

Bibliography

[1] B. Kernighan and D. Ritchie, The C Programming Language, Second Ed.,
Prentice-Hall Software Series, 1988

[2] S. Loosemore, R. M. Stallman, et. al., The GNU C Library Reference

Manual, GNU Press, 2004.

[3] K. Reckdahl, Using Imported Graphics in LATEX2e, Version 2.0, whitepa-
per, Dec. 15, 1997

[4] B. Stroustrup, The C++ Programming Language, Special Ed., Addison-
Wesley, 1997

[5] T. van Zandt, PSTricks: PostScript Macros for Generic TEX, Ver-
sion 0.93a, whitepaper, Mar. 12, 1993

70

Index

Angular mode, 15, 34, 42
Animation, 5, 56
Arrow, 16, 26–27, 46
Aspect Ratio, 13–14, 20
Axes, 27–28

Bounding Box, 13–14, 17, 27, 40

Camera, 17–18, 39–40, 61
lens, 39
manipulation, 17, 40

Clipping, 40–41
Color, 19–20, 42–43

shading, 43
Cropping, 40–41

Domain, 50–52

coarse mesh, 50–51
fine mesh, 50–51
resizing, 51
slicing, 51

Filling, 18, 20, 27, 42, 45
color, 43, 45

Free software, 4, 67–68
Functions, 32–36

Graph paper, 28
Graphical interface, 9

Hidden object removal, 61–63

Installation, 5–7, 57–59

Labels, 20–22, 38
alignment, 21–22
axis, 27
offset, 21
rotated, 42

Linear regression, 29

Mac OS X, 5, 58
Marker types, 20–21, 29

Offset
figure, 13
label, 21–22, 27

Path, 20, 43–46

fractal, 54
in PSTricks, 43
on sphere, 55
style, 18–19, 41
width, 18, 41

Plotting, 28–30, 50–52

calculus, 53–54
data, 28–30
polar, 28
spherical, 55–56
surface, 61–63
vector fields, 53–54
wiremesh, 51

PSTricks, 19, 27, 43, 45

Screen, 14, 17, 39–40

Windows, 5–6

71

	Introduction
	Software Dependencies
	Installation

	Getting Started
	Running ePiX
	A Sample File
	Basic Picture Concepts
	Logical Size, and Aspect Ratio
	Creating and Drawing Objects
	The Camera
	Drawing Attributes
	Typography
	C++ Basics
	High-Level Picture Elements
	Basic Plotting

	Reference Manual
	More About C++
	The Camera
	Clipping and Cropping
	Attributes
	The Path Class
	Geometric Data Structures
	Domains and Plotting
	Non-Euclidean Geometry
	Animation
	Troubleshooting

	Advanced Topics
	Hidden Object Removal
	Extensions

	Software Freedom
	Acknowledgements

