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Abstract

Device drivers typically execute in supervisor mode and
thus must be fully trusted. This paper describes how to
move them out of the trusted computing base, by run-
ning them without supervisor privileges and constraining
their interactions with hardware devices. An implementa-
tion of this approach in the Nexus operating system exe-
cutes drivers in user space, leveraging hardware isolation
and subjecting them to reference validation. These Nexus
drivers exhibit performance nearly as fast as earlier in-
kernel, trusted drivers. For example, the monitored driver
for an Intel e1000 Ethernet card has throughput compara-
ble to a trusted driver for the same hardware under Linux.
And a monitored driver for the Intel i810 sound card pro-
vides continuous playback. Drivers for a disk and a USB
mouse have also been moved successfully to operate in
Nexus user space with reference validation.

1 Introduction

A Microsoft study reports that 85% of crashes in Windows
XP result from device driver failures (see [27]), and a sim-
ilar study based on automated bug-finding tools claims
that Linux driver code has an error rate up to seven times
higher than other kernel code [8]. Yet device drivers are
part of the trusted computing base (TCB) of every appli-
cation, because the monolithic architecture of mainstream
operating systems forces device drivers to be executed
inside the kernel, with high privilege. The situation is
not substantially different for exokernels [10], which also
run device drivers inside the kernel for performance rea-
sons. Some microkernels and other research operating
systems [2, 7, 19, 22] run device drivers in user space to
isolate the operating system from accidental driver faults,
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but these drivers retain sufficient I/O privileges that they
must still be trusted.

The advantages of isolating device drivers from each
other and from other system components are well
known [6,24,28]. However, such isolation is rare because
device drivers require a rich interface to the rest of the
system and because their performance requirements con-
strain how they may be partitioned.

This paper introduces a practical mechanism for exe-
cuting device drivers in user space and without privilege.
Specifically, device drivers are isolated using hardware
protection boundaries. And each device driver is given
access only to the minimum resources and operations nec-
essary to support the devices it controls (least privilege),
thereby shrinking the TCB.1 A system in which device
drivers have minimal privileges is easier to audit and less
susceptible to Trojans in third-party device drivers.

Device drivers that run in user space still need to initi-
ate hardware I/O operations and handle interrupts. These
operations can cause device behavior that compromises
the integrity or availability of a kernel or other programs.
Therefore, in our driver architecture, a global, trustedref-
erence validation mechanism(RVM) [3] mediates all in-
teraction between device drivers and devices. The RVM
invokes a device-specificreference monitorto validate ev-
ery interaction between a device driver and its associated
device, thereby ensuring the driver conforms to adevice
safety specification(DSS), which defines allowed and, by
extension, prohibited behaviors.

The DSS is expressed in a domain-specific language
and defines a state machine that accepts permissible tran-
sitions by a monitored device driver. We provide a com-
piler to translate a DSS into an executable reference mon-
itor that implements the state machine. Every operation
by the device driver is vetted by the reference monitor,
and operations that would cause an illegal transition are
blocked. The entire architecture is depicted in Figure 1.

1Some drivers, such as the clock, provide functionality needed for
defining or enforcing security policies. These device drivers remain part
of the TCB no matter where they execute.
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Figure 1: Safe user-space device driver architecture.

The RVM protects the integrity, confidentiality, and
availability of the system, by preventing:

• Illegal reads and writes: Drivers cannot read or
modify memory they do not own.

• Priority escalation: Drivers cannot escalate their
scheduling priority.

• Processor starvation:Drivers cannot hold the CPU
for more than a pre-specified number of time slices.

• Device-specific attacks:Drivers cannot exhaust de-
vice resources or cause physical damage to devices.

In addition, given a suitable DSS, an RVM can enforce
site-specific policies to govern how devices are used. For
example, administrators at confidentiality-sensitive orga-
nizations might wish to disallow the use of attached mi-
crophones or cameras; or administrators of trusted net-
works might wish to disallow promiscuous (sniffing)
mode on network cards.

One alternative to our approach for monitoring and con-
straining device driver behavior is to use hardware capable
of blocking illegal operations. An IOMMU [1, 4, 12, 21],
for example, limits the ability of devices to perform DMA
transfers to or from physical addresses the associated
drivers cannot read or write directly. This mechanism,
however, does not mediate other aspects of driver behav-
ior, so it is strictly less powerful than an RVM. For ex-
ample, an IOMMU cannot prevent interrupt livelock (as
exemplified in Section 5.2), limit excessively long inter-
rupt processing, or protect devices from physical harm by
drivers. IOMMUs also cannot enforce limitations on the
use of cameras, microphones, or network sniffing.

In sum, this paper shows how to use standard mem-
ory protection and device-specific reference monitors to
execute device drivers with limited privilege and in user
space. The requisite infrastructure is small, easy to audit,
and shared across all devices. Our prototype implemen-
tation demonstrates that this approach can defend against
malicious drivers and that the performance costs of this

enhanced security are not prohibitive.
The rest of this paper is structured as follows. Section 2

describes the device I/O model, which dictates assump-
tions underlying our design. Section 3 describes RVM
functionality and the DSS language. Section 4 describes
our instantiation of these ideas in the Nexus operating sys-
tem. Section 5 reports on the performance, robustness,
and size of our unprivileged, isolated drivers for sound
cards, mice, network interface cards, and disks. Section 6
surveys relevant work on driver isolation and hardware
specification, while Section 7 concludes.

2 Device I/O Model

Device drivers send commands to devices, check de-
vice status using registers, receive notification of status
changes through interrupts, and initiate bulk data trans-
fers using direct memory access (DMA). How they do so
constitutes a platform’sI/O model. Our work is targeted
to the x86 architecture and PCI buses; what follows is a
brief overview of the I/O model on that platform. Similar
features are found on other processors and buses.

Modern buses implement device enumeration and end-
point identification. Each device on a PCI bus is identified
by a 16-bit vendor identifier and a 16-bit model number;
the resulting 32-bitdevice identifieridentifies the device.
Device enumerationis a process for identifying all devices
attached to a bus;endpoint identificationis the process of
querying a device for its type, capabilities, and resource
requirements.

Device enumeration and endpoint identification typi-
cally occur at boot time. Interrupt lines and I/O registers
are assigned, in accordance with device requests, to all de-
vices discovered. Device identifiers govern which device
drivers to load.

Devices haveregisters, which are read and written by
drivers to get status, send commands, and transfer data.
The registers comprise I/O ports (accessed using instruc-
tions likeinb andoutb), memory-mapped I/O, and PCI-
configuration registers. Each register is identified by a
typeand anaddress. Contiguous sets of registers consti-
tute arange, identified by type, base address, and limit
(the number of addresses in the range). For all register
types, accesses are parameterized by an address, a size,
and, for writes, a value of the given size. Write operations
elicit no response; read operations produce a value of the
given size as a response. Both operations can cause side
effects on a device.

Devices that transfer large amounts of data typically
employ DMA rather than requiring a device driver to
transfer each word of data individually through device
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registers. To initiate a DMA transfer, the device driver
typically writes a pointer into a device’s control regis-
ter. Some devices can perform DMA to or from multiple
memory regions if the driver writes a pointer for a list of
regions. Device drivers using DMA transfers must first
obtain from the kernel a memory region with a known,
fixed, physical address.

Devices can besynchronousor asynchronous. Drivers
must poll synchronous devices for completed operations
or changes in status. In contrast, when a driver submits an
operation to an asynchronous device, the driver can yield
the CPU until the device later signals its response (or any
other status change) by interrupting the processor. When
that interrupt occurs, the operating system invokes code
specified by the driver. In most cases, an interrupt must
be acknowledged by a driver, or the device will continue
to send the same interrupt. Interrupts can be prioritized
relative to each other, but they generally occur with a high
priority, preempting most other tasks.

Each device signals interrupts using a pre-assignedin-
terrupt line. On some architectures, including the x86,
interrupt lines can be shared by multiple devices. Drivers
must read status registers for each of these devices to de-
termine which specific device caused the interrupt.

Devices are assumed to be in an unknown state when
an operating system boots or when a driver is loaded or
reloaded. When a driver is unloaded, it unregisters its in-
terrupt handler and releases its DMA memory. At that
point, the device must be placed in a state that does not
generate interrupts or use DMA.

Devices are typically forgiving about device driver tim-
ing, and device drivers are similarly forgiving about de-
vice timing. This flexibility is a necessity, because a
modern multitasking operating system might be heav-
ily loaded, implement arbitrary scheduling policies, or at
times execute with interrupts disabled. In addition, de-
vices and their drivers are typically designed to work with
several processor generations, which differ in execution
speed. Device registers and interrupts, rather than precise
timing, are used to implement synchronization between
the device and its driver so that devices and drivers be-
have safely and predictably despite uncertain delays.

Some drivers are divided into components or hierar-
chies. For example, SCSI, ATA, and USB each have a
controller driver plus additional drivers for peripherals,
like disks, mice, keyboards, etc. In suchdriver hierar-
chies, only the device driver for the controller performs
actual I/O operations, handles interrupts, or initiates DMA
transfers. Drivers for peripherals communicate with their
devices through the controller driver, hence the peripheral
driver need not be monitored. So a single DSS for the

controller suffices to handle the entire hierarchy.2

Some devices, particularly high-performance network
cards, support loadable firmware, which executes on the
device and thus can change the way the device behaves.
This firmware must be trustworthy [16]. Firmware is
loaded through I/O operations or DMA, a sequence of
events that can be monitored. In principle, then, an RVM
could authenticate firmware using signatures or perform
analysis to show the firmware is trustworthy. Our current
DSSes do not implement these checks. Doing so would be
straightforward, though designing an analysis algorithm
might not be.

3 Unprivileged Driver Architecture

In our user-space driver architecture, drivers, like any
other user process, are loaded from a filesystem; once
loaded, they execute and can be unloaded and restarted at
any time. When a driver is first loaded, it executes a sys-
tem call to find a compatible device. As part of this system
call execution, the RVM identifies an appropriate device
and reference monitor and returns to the driver a structure
describing the device ID and I/O-resource assignments.
Henceforth, the driver uses a driver system call interface
(described in Section 4.3) to perform I/O operations and
receive interrupts. Subsequent uses of that interface cause
the RVM to invoke the reference monitor.

Reference monitors are instantiated immediately after
endpoint enumeration, based on device IDs. Reference
monitors persist, even if corresponding drivers are un-
loaded and restarted.

3.1 Security properties

Drivers are not trusted, but the RVM, reference monitors,
and devices are. Moreover, reference monitors are com-
piled from DSSes, so DSSes and the DSS compiler must
be trusted.

Some DSSes will be written by hardware manufactur-
ers; others will be written by independent experts, includ-
ing security firms or OS distributors. But independent of
the source, a DSS ought to be small and declarative, hence
conducive to auditing.

We assume devices behave safely if given sufficiently
restricted inputs. Such an assumption is inescapable, be-
cause devices have the ability to read and write any mem-

2We have nevertheless developed an approach to composite reference
monitors: the composite reference monitor is derived from the controller
reference monitor and an auxiliary reference monitor for each attached
device. In practice, the only property that changes when peripherals are
attached seems to be the interrupt rate limit.
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ory, generate arbitrary interrupts, or even starve hardware
buses directly.

The two sources of driver misbehavior we consider
are drivers designed by malicious authors (Trojans), and
drivers with bugs that can be subverted by users or remote
attackers. Both are dealt with by our RVM.

The RVM prevents drivers from performing invalid
reads and writes using hardware isolation and by checking
driver accesses to DMA control registers.

• Hardware isolation works as with other user pro-
cesses, giving each driver process direct access only
to its own memory space.

• By checking that every DMA address sent to the de-
vice is allocated to the driver, the RVM prevents a
device driver from using DMA for illegal reads and
writes.

The RVM must also defend against a device driver that
attempts to escalate its execution priority or that starves
other processes and the kernel by causing large numbers
of interrupts or by spending too much time in high-priority
interrupt handlers. A timer driver might set too high a
timer frequency, or a sound card driver might set too small
a DMA buffer for playback, causing frequent notifica-
tions to be generated when the buffer becomes empty.
Some of these unacceptable behaviors can be prevented
when the driver is setting up the device—for example,
by a reference monitor imposing a lower bound on the
sound card DMA buffer size—but RVMs provide three
additional protection measures. First, the RVM limits the
frequency at which a driver can receive interrupts, with
different limits for different types of devices. Second, the
RVM limits the length of time that an interrupt handler
runs. Finally, the RVM ensures that each interrupt handler
acknowledges every interrupt, to prevent devices from is-
suing additional interrupts for the same event. (The details
of monitoring interrupt handlers in our Nexus implemen-
tation are described in Section 4.1.)

Finally, an RVM must identify and prevent invocations
of operations known or suspected to harm devices. Exam-
ples include: overclocking processors, sending a monitor
an out-of-range refresh rate, instructing a disk to seek to
an invalid location, or writing invalid data to non-volatile
configuration registers. Other attacks against devices in-
volve exhausting finite resources, such as wearing out
flash memory by writing repeatedly to one block or wast-
ing battery power on mobile devices. The RVM prevents
these attacks simply by preventing operations that would
cause unsafe device states and by rate-limiting operations
that would exhaust device resources.

Notice that no effort is made to protect data contents,

including message sources and destinations. The RVM
does not, for example, prevent a malicious driver from
mirroring packets to an attacker and does not prevent a
disk driver from writing data to the wrong block. Such
protections concern end-to-end properties, hence they are
best implemented above the driver level.

3.2 Device safety specifications (DSS)

Each DSS describes thestatesandtransitionsfor a state
machineand is compiled to create a reference monitor.
Inputs to the reference monitor—operations executed by
a driver and events from the corresponding device—are
delivered serially to the reference monitor by the RVM.
When an input does not correspond to an allowable transi-
tion, then the reference monitor deems it illegal, the RVM
terminates the driver for the corresponding device, and the
device is reset.

The state of a DSS state machine records interesting as-
pects of the history of operations and events. This state is
defined in terms ofstate variables, and it often correlates
with the state of the I/O device itself. Some of these state
variables are explicitly defined by the program; others are
implicitly defined by the RVM.

Implicitly defined state variables are given values
by the RVM as a result of registration events (see
Section 4.1). The implicit variables$PORTIO[],
$MMIO[],$PCIREG[], and$INTR[] identify I/O reg-
isters and interrupt lines set during endpoint identification.
And$MONITORED[] and$UNMONITORED[] describe
two types of memory regions allocated by the driver for
DMA transfers. Access to a monitored memory location
generates an input to the reference monitor; this form of
memory is used to store commands or pointers to DMA
regions, similar to device registers. Access to an unmon-
itored memory location is not visible to the RVM, mak-
ing unmonitored memory suitable only for holding data
not relevant to the DSS, such as audio samples from a
sound card. Unmonitored reads and writes are consider-
ably faster than monitored reads and writes.

Each state machine transition is specified with a predi-
catePi and an actionAi. Pi is a boolean expression over
events and state variables.Ai is a program fragment that
modifies state variables to produce the new state. A tran-
sition that pairs a predicatePi and an actionAi is written
using the syntaxPi { Ai }.3

3Some predicates and actions are too complex to write in termsof
the simple syntax currently supported by our DSS language, where user-
defined state variables must be scalars, and predicates cannot be recur-
sive. The DSS compiler therefore supports embedded blocks of C, coded
asC:{. . .}, appearing in predicates and in actions. Within an embed-
ded C block, it is possible to nest an embedded block of DSS code, e.g.,
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Any operation or event—though this is most useful for
interrupts—can be assigned a rate limit as part of a DSS.
Rate limits can be manually incorporated into transitions
using counters and timers. As a convenience, the notation
Pi <rate, max, start> { Ai } compiles to a transition
with a leaky bucket expressing a rate limit. So, the as-
sociated transition can occur at mostrate times per sec-
ond; bursts are allowed beyond this rate, up tomax occur-
rences at once; when the driver starts, it hasstart initial
capacity.

As an example, an abridged version of our DSS for the
Intel i810 audio device appears in the Appendix.

4 Implementation

We instantiated our user-level device driver architecture
in the Nexus trusted operating system [25], which has
many similarities to traditional microkernels, including
hardware-implemented process isolation. Other operat-
ing systems that support process isolation (e.g., Linux or
Windows) could also host an RVM.

Our implementation of user-space, unprivileged device
drivers in Nexus includes the RVM, an event interface be-
tween the RVM and the reference monitor, a system call
interface by which drivers can request services from the
RVM, and a mechanism for limiting driver execution time
and the frequency of events. We discuss each of these
below and report on our experience porting Linux kernel
device drivers to Nexus user space.

4.1 Reference monitor interface in Nexus

Reference monitors define functions that the RVM calls
to initialize implicit state variables and to deliver inputs
to be checked. These inputs are sent in response to driver
system calls and device events. Each I/O operation and
event described in Section 2 causes a distinct input.

State-variable setup. After device enumeration and
endpoint identification occur, Nexus initializes one ref-
erence monitor for each device. The implicit state vari-
ables are arrays. The RVM populates them based on
the results of endpoint enumeration by calling the func-
tion register region to set up I/O ports, memory-
mapped I/O, and PCI configuration registers and the func-
tion register intr to set up an interrupt line.

to use an identifier or an operator not available in C. Our syntax was
inspired by Java and C nesting in Jeannie [18].

Driver and device events. Device drivers affect the
state of the system and the reference monitor in three
ways: by performing I/O, by allocating memory, or by
exiting. When the driver reads or writes a register or
a monitored memory location, the RVM sendsread or
write events to the reference monitor. After aread
operation, the device responds with a value, generating
a read response event. Theread operation can be
blocked if it would cause a disallowed side effect. The
read response event is never blocked, and the value
it conveys can be used to change state variables.

A driver can allocate memory to use for DMA, which
causes the RVM to sendregister region events
with a region type ofMONITORED or UNMONITORED.
Finally, if the driver exits or executes an operation not per-
mitted by the DSS, the RVM sends areset event.

Devices affect reference monitor state when sending
interrupts, which generateintr events. When the ref-
erence monitor gets anintr event, it sets an interrupt
status flag (the reference monitor state implicitly in-
cludes one flag per interrupt line) topending, and the
RVM schedules the driver with high execution priority.
The driver then has a configurable amount of time to re-
spond to the interrupt, by checking if the interrupt was
from its device, and if so, acknowledging it so that the
device does not generate further interrupts for the same
device event or completed operation. This acknowledg-
ment is implemented with I/O deviceread andwrite
operations; reference monitors recognize the acknowledg-
ment as a transition and reset the interrupt flag toidle.
The RVM calls theget intr status function on each
operation after anintr event (i.e., while the driver’s
interrupt handler is executing). As soon as the inter-
rupt status flag is reset toidle, the RVM lowers the
driver’s execution priority to its default level. If the driver
does not reset thestatus before the allowed time has
elapsed, then it is treated as a priority escalation attack;
the RVM terminates the driver and resets the device.

When an interrupt occurs on a shared line, the RVM
notifies all drivers sharing that line. Each driver must then
query its device to see if it was the source of the inter-
rupt. This approach correctly handles merged interrupts,
where two or more devices generate an interrupt at the
same time, as well as spurious interrupts.

4.2 Rate limiting in Nexus

A device managed by a well-behaved driver should not
exceed rate limits enforced by the reference monitor.
Drivers can calldriver get rate limits to learn
such rate limits and can manage interrupts using a throt-
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tling mechanism provided by the device or by disabling
interrupt-generating acts by the device when an interrupt
would be disallowed.

The RVM could impose rate limits on uncooperative
drivers directly or by terminating a driver when its associ-
ated device exceeds the limit. We implement the latter in
Nexus. If an RVM can mask interrupts from each device
independently (e.g., as with non-shared interrupts or edge-
or message-signaled interrupts), then the RVM could limit
the interrupt rate by masking interrupts that would exceed
a rate limit. However, for shared, level-triggered interrupt
lines, this approach delays interrupts for all drivers shar-
ing the line. Since limits cannot be enforced by masking
these interrupts, the driver associated with a device that
violates rate limits must be terminated.

To ensure that rate limits are applied fairly to inter-
rupts on shared lines, only acknowledged interrupts are
counted. The RVM queries each reference monitor’s state
using theget intr status function to learn how the
monitored driver handled the interrupt—by deciding it
was for a different driver, or by acknowledging it.

4.3 System calls in Nexus

Nexus implements system calls for drivers to find a de-
vice, allocate memory, and perform I/O operations:

• driver init pci(pci ids[], &device)
is the main initialization routine. A device driver
calls it to find devices and to find their I/O registers
and interrupt lines. The first parameter is a list of PCI
IDs the driver can manage. Thedevice parameter
returns a structure describing the I/O registers and
interrupt lines for the driver to communicate with
the device.

• driver allocate memory(size,
is monitored, &v addr, &p addr) al-
locates kernel memory for DMA buffers and returns
the virtual and physical addresses to the device
driver. Theis monitored parameter indicates if
reads and writes should be checked by the reference
monitor. If the allocated region is unmonitored,
then the reference monitor will not allow pointers
to that region to be written to registers that require
monitored memory, such as DMA indices and
command buffers.

• driver wait for intr(intr) blocks the
calling thread in the device driver until an interrupt
arrives on the specified interrupt line. Normally,
one thread in a driver runs a loop that executes this
system call and runs an interrupt handler when the
call returns.

• driver get rate limits() returns rate limits
for all transitions as an array of leaky bucket defini-
tions. A driver can use this information to delay op-
erations and interrupts so that no behavior exceeds
rate limits.

• driver read(region, addr, len) and
driver write(region, addr, len,
val) read and write port I/O, memory-mapped I/O,
PCI configuration registers, and monitored DMA
memory.

4.4 Driver source compatibility

Rather than write new drivers for Nexus, we used drivers
from Linux 2.4.22.4 Our original goal was source compat-
ibility between these Linux drivers and Nexus user space
drivers. However, the Linux drivers did not provide some
of the information necessary to enforce a DSS efficiently.
Moreover, small changes to driver source code promised
to reduce our overall effort in porting Linux drivers to
Nexus and to make the resulting Nexus drivers more ef-
ficient. So we used a hybrid approach, implementing
general-purpose compatibility functions for Linux drivers
and also changing Linux driver code to work better with
an RVM. The compatibility functions provide user-space
equivalents of global variables and functions in the Linux
kernel that Linux drivers would normally access directly.

Linux I/O operations. Linux drivers use functions and
macros for most I/O operations. Port I/O and MMIO are
implemented by macros for reading and writing each valid
word size. PCI register I/O is implemented using func-
tions. For our Nexus port, we redefined these macros and
functions to calldriver read anddriver write.

Linux drivers read and write DMA memory by derefer-
encing pointers or by calling functions likememcpy. We
map monitored DMA memory to invalid pages so that ac-
cessing it causes page faults. The RVM includes a trap
handler that redirects these page faults todriver read
anddriver write system calls. System calls are faster
than page faults (see Section 5.1), so programmers may
change monitored DMA memory operations to explicit
system calls wherever performance is critical.

Linux memory allocation. The Linux kernel provides
a variety of memory allocation functions to allocate dif-
ferent block sizes, in interrupt or non-interrupt con-
texts, in low or high (beyond 1GB) memory, and with

4Linux 2.4.22, though not current, is the version on which parts of
Nexus are based. We chose to copy drivers from this version ofLinux to
simplify implementation.
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or without contiguity requirements. DMA buffers must
be in low memory and mapped contiguously; network
packet buffers must be allocated in the context of net-
work interrupts. We redefine those functions to call
driver allocate memory, which implements the
subset of memory allocation functionality needed by our
drivers. Thedriver allocate memory call pro-
vides contiguous memory with known addresses appro-
priate for DMA but does not differentiate by block size
and does not allocate high memory. Memory without
DMA or concurrency requirements is allocated in user
space from the heap. To provide allocation in an inter-
rupt context without deadlocking, we implemented pre-
allocated memory pools.

Memory used for DMA operations must bepinned: it
must have a fixed physical address and never be paged
to the disk. Pinned memory is more expensive to main-
tain and has a stricter quota than normal heap memory.
All memory, including DMA memory, is automatically
freed when a driver exits. Drivers (and other processes)
can free heap memory at any time, but DMA memory can
only be freed when a driver exits. Freeing DMA mem-
ory in an active driver would require expensive checks by
the reference monitor to ensure the device cannot use the
memory in the future. Freeing DMA memory also leads
to fragmentation, which makes all subsequent checks of
pointers to DMA memory more expensive. Fortunately, in
practice, all the Linux drivers we ported except the USB
controller driver allocate DMA memory once and free it
only when they exit; we easily modified the USB driver to
behave this way.

Mutual exclusion. Device drivers can be invoked con-
currently from client applications and from interrupts.
The former is easily handled using standard thread syn-
chronization mechanisms. The latter is not, because inter-
rupts do not respect these mechanisms, and requesting a
lock from an interrupt handler is infeasible.

Linux drivers synchronize concurrent invocations from
clients using locks, which Nexus also provides. However,
Linux drivers typically implement synchronization with
devices by disabling interrupts. While interrupts are dis-
abled, the driver cannot be interrupted by other drivers or
by the kernel. But making this same functionality avail-
able for untrusted user-space drivers allows starvation at-
tacks.

Fortunately, typical devices need only non-reentrant
code sections, which we implement usingdriver mutexes.
After a driver thread acquires a driver mutex, the Nexus
scheduler marks all other threads associated with the same
device as not runnable; the kernel and other user-space

Linux Lines Lines DSS
Driver LoC changed added LoC

i810 5,500 26 56 149
e1000 11,849 50 3 303

USB UHCI 13,328 169 525 508
USB mouse 650 6 16 -

USB disk 19,767 29 121 -
Compat library - - 5,523 -

Figure 2: Lines of code in each ported Linux driver and
DSS. USB mouse and disk drivers are monitored by the
UHCI DSS.

threads are unaffected. Interrupts for this driver are de-
layed until it releases the mutex.5 Thus, driver mutexes
implement non-reentrant sections of code. The driver can
be interrupted by other programs, including other drivers,
but not by concurrent invocations or by interrupts.

Using driver mutexes instead of disabling interrupts
poses problems for drivers that must synchronize with
other drivers. We could implement such synchronization
by adding ordinary mutual exclusion to the driver. Driver
mutexes also may pose problems for drivers that require
atomicity or precise timing. For example, the Linux i810
sound card driver calibrates playback speed by measuring
playback progress over a fixed-length period during initi-
ation. Precise scheduling is difficult to implement for user
space and can be viewed as a privilege that drivers do not
need. So we rewrote that sound card driver to measure
the interval over which its calibration routine ran rather
than using a fixed-length period, because measuring time
in user space requires no special privileges.

5 Results

We implemented user-space device drivers for the i810
sound card, e1000 network card, USB UHCI controllers,
USB mice, and USB disks in the Nexus operating system.
We here quantify the performance, robustness, and com-
plexity of these drivers, their DSSes, and the Nexus RVM.

We quantify the ease of driver porting and the auditabil-
ity of DSSes by counting the number of lines of code in
each DSS and the number of lines changed to port each
Linux driver to Nexus. These counts are given in Figure 2.
We distinguish between lines we modified in the Linux
driver files and lines we added in new files. The number
of changed and added lines was small, and as expected,
each DSS is dramatically smaller than the corresponding
driver.

5This technique would be both correct and efficient on multiproces-
sor systems, although Nexus does not yet run on multiprocessors.
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We wrote each DSS by referring to the manufac-
turer’s documentation about device behavior and to ex-
isting drivers. The DSS for USB UHCI was derived en-
tirely from the documentation. The i810 and e1000 DSSes
are based on documentation that describes features our
drivers actually use; other features are disallowed by the
DSS. Writing a DSS based on an existing driver is tempt-
ing, but risks disqualifying other drivers that attempt un-
known (but safe) behavior. Writing a DSS based on all
features described in published documentation is more
time-consuming, but in theory, it admits any legal driver.
We estimate the time to develop a DSS, given a work-
ing driver, manufacturer’s documentation, and familiarity
with the DSS language but not with the device, as one to
five days.

5.1 Driver performance

To gain insight into the performance of our user-space de-
vice drivers, we tested each at idle and under load. Our
test system was a 3.0 GHz Pentium 4 system dual-booting
Nexus and Linux 2.4.22. For network tests, the remote
host was a 2.4 GHz Athlon 64 X2 system running Linux
2.6.22, connected over a switched, lightly loaded 1 Gbps
network.

To obtain a detailed breakdown of the sources of over-
head, we instrumented several versions of the e1000 net-
work driver and the i810 sound driver:

• Linux : An in-kernel Linux driver.
• Kernel: An in-kernel Nexus driver.
• Unsafe: A Nexus user-space driver, but with no ref-

erence monitor. This driver has direct access to I/O
and DMA.

• Nullspec: A monitored Nexus user-space driver but
with the trivial reference monitor, which is satisfied
by any sequence of events.

• Safe: A driver with a full reference monitor.

These driver versions specifically quantify the costs of
running under Nexus (Kernel), running in user space (Un-
safe), monitoring I/O and DMA operations (Nullspec),
and checking operations against a specification (Safe).
Overall, these drivers permit us to apportion the costs of
safe user-space drivers to the various mechanisms needed
to support them.

To test bulk data throughput of the e1000 driver, we
sent UDP packets at a constant rate of 1 Gbps to and from
a Linux host running Iperf [29]. We varied the size of each
packet from 100 bytes to 1470, in order to find the limits
of packet-processing rate and data rate. Figures 3 and 4
show the performance, in Mbps and in thousands of pack-

ets per second, for all versions of the e1000 driver. All five
versions of the e1000 driver performed identically when
receiving packets. The three user-space drivers—Unsafe,
Nullspec, and Safe—show somewhat degraded perfor-
mance when sending packets smaller than 800 bytes. The
user-space drivers take longer to handle interrupts, and
sending generates more interrupts than receiving because
the e1000 driver receives (but does not send) many pack-
ets per interrupt under heavy load.

To measure interrupt handling times, we instrumented
the interrupt handler for the i810 driver. This test uses the
CPU cycle counter for nanosecond timing, with instru-
mentation added to the kernel’s trap function (where an
interrupt is first visible to software) and to the exit point of
the interrupt handler. Average interrupt processing time,
over 120 samples, was5.3± 0.2µs for Linux,8.5± 0.2µs
for Kernel, 22.1 ± 1.5µs for Unsafe,37.9 ± 2.4µs for
Nullspec, and46.9 ± 3.8µs for Safe. So, the user-space
interrupt handlers took three to five times as long as the
in-kernel Linux and Nexus drivers. This slowdown is not
unexpected, because user-space handlers require a sched-
uler invocation and two or more context switches.

A macrobenchmark for network round-trip time, which
includes driver response time, is theping command,
which sends an ICMP echo request packet and receives
an ICMP echo reply packet in return. The replies are nor-
mally generated by the remote kernel, resulting in low la-
tencies. The elapsed time between sending the request and
receiving the reply is the network round-trip time plus the
time required for the remote host to process the request.
We measured ping times from a Linux box to a Nexus box
running each of the four test e1000 drivers. The average
round-trip time, over 100 packets, was103 ± 35µs for
Kernel,139± 41µs for Unsafe,158 ± 55µs for Nullspec,
and156 ± 54µs for Safe.

These measurements reflect some simple optimizations
in the network driver:

• We changed monitored DMA memory accesses from
dereferences (i.e., page faults) to explicit system
calls.

• We combined sequences of unconditional reads or
writes into a single system call. The driver writes be-
tween 8 and 2,048 bytes in a logical operation. Nor-
mally, these are written 4 bytes at a time; we added a
system call to handle a sequence as one operation.

• We stored in the driver the result of reads from a sta-
tus register. The driver reads the register repeatedly
to check several bits. It does not need (and is not ex-
pecting) fresh values each time. Thus, we combined
several nearby reads into a single system call.
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Figure 3: Throughput (Mbps) sent and received by all versions of the e1000 driver using Iperf.
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Figure 4: Throughput (thousands of packets/second) sent and received by all versions of the e1000 driver using Iperf.

Optimizations Packets/sec Throughput
Page faults 43,203 511.6 Mbps
Syscalls 65,074 753.5 Mbps
Syscalls+batching+caching 123,328 947.7 Mbps

Figure 5: Performance effects of replacing page faults
with system calls, then batching and caching groups of
operations.

We determined where to apply these techniques by iden-
tifying code in the driver that most often calledread and
write system calls and caused page faults. We changed
39 lines of driver code (in less than half a day), with dra-
matic results: we nearly doubled the receive bandwidth
and nearly tripled the packet processing rate. Figure 5
shows these results.

Another important driver performance metric is the
CPU time spent in drivers while performing a high-
level task. To quantify CPU time for our drivers, we
streamed video (with audio) over HTTP and played it us-
ingmplayer. The video averaged 1071 Kbps and lasted
for 30 seconds. The resulting CPU time spent in the net-
work driver, the audio driver, and the kernel is shown in
Figure 6. CPU utilization is higher in Linux than in Ker-
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Figure 6: CPU time apportionment when streaming video
over the network.

nel because Linux implements TCP/IP in the kernel, and
Nexus implements it as a user-space library; application
and library CPU time are not shown.

We measured how often each driver executes basic op-
erations and what each basic operation costs. The fre-
quencies of memory, port I/O, MMIO, and interrupts are
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Audio (playback) Network (idle) Network (load) USB (idle) USB (mouse) USB (disk)
Unmonitored mem 8018 0 4578113* 8535 19159 223346
Monitored mem 78.3 5.6 42459 0 1930 103374
Port I/O 279 0 0 267 764 956
Interrupts 15.7 1.1 2079 0 124 138
MMIO 0 139 10586 0 0 0

Figure 7: Average rate (per second) of read and write operations during steady-state operation. (* estimated result)

shown for each driver in Figure 7. All figures are the
average rate per second when the driver is idle or under
load, as indicated. For this test, the network load was a
flood ping. Counting unmonitored memory operations
(by making them monitored) makes the e1000 too slow
for our tests. Hence, we estimated the rate of unmoni-
tored memory operations for the e1000 by measuring a
heavily instrumented driver under partial load, scaling its
results up to what they would have been given full load.

Unmonitored memory operations are anywhere from
two to 100 times more frequent than monitored memory
operations, depending on the driver. We measured the av-
erage cost, over 100,000 tests, of an unmonitored memory
operation as0.59ns, a monitored memory operation exe-
cuted as a system call as0.84µs, and a monitored memory
operation that causes a page fault as1.53µs. Page faults
are more expensive because they must save more state and
because the page fault handler must disassemble and in-
terpret the faulting instruction.

The cost of each basic I/O operation varies relatively lit-
tle. However, the cost of checking operations against the
reference monitor can vary dramatically. Figure 8 shows
the cost of checking USB port I/O operations (for disk
I/O) against the reference monitor. We found that 80%
of the time, the cost is under2µs. The other 20% of the
time, the cost is190µs or more. This is because an ex-
pensive safety check is required only when the value read
from a certain register changes. When the value has not
changed—80% of the time—the check is cheap.

5.2 Driver robustness

Accepted quantitative metrics for the security of a system
do not exist. Nevertheless, to establish the security of our
RVM and reference monitors, we used two approaches
others have used. First, we simulated unanticipated mali-
cious drivers by randomly perturbing the interactions be-
tween drivers and the RVM, resulting in potentially in-
valid operations being submitted to the reference moni-
tor and possibly to the device. Second, we built specific
drivers that perpetrate known attacks on the kernel using
interrupt and DMA capabilities.

We simulated unanticipated malicious drivers by
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Figure 8: Cost of executing and checking USB disk port
I/O operations.

changing operations and operands in a layer interposed
between a legal driver and the RVM. This layer modified
each operation according to an independent probability of
1 in 16,384.6 Each operation was a read or a write; our
modifications involved replacing either the address, the
length, or the value (at random) with another value in the
appropriate range. So, a write to an I/O port was replaced
with a write to a port in the same range, a write of a dif-
ferent length, or a write of another value. Reads were
perturbed similarly. Note, this approach does not produce
repeatable experiments, because driver behavior depends
on external factors like the OS scheduler and the arrival
times of packets, which are not under our control.

This perturbation testingis similar to fuzz testing [23,
28], except that in our approach only I/O operations were
modified—not source or machine code. These other types
of modifications test isolation properties, whereas we are
interested only in testing properties enforced by the RVM
and the reference monitor.

We applied perturbation testing to the e1000 driver.
When the modifications were benign, the driver showed
no apparent failures. Sometimes, the driver itself detected
an error (e.g., a status register read failed a sanity check)
and exited cleanly. Often, the reference monitor detected
an illegal operation, and the RVM terminated the driver.
Finally, our perturbations sometimes caused the driver to

6We also tried higher and lower probabilities, resulting in more and
fewer errors than reported here.
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Driver
Failure type Nullspec Safe
No failure 7 (23%) 7 (1%)
Driver exits 7 (23%) 16 (1%)
RVM terminates driver — 1132 (94%)
Driver out of sync 16 (52%) 45 (4%)
Hardware damaged 1 (3%) 0 (0%)
Total perturbation tests 31 (100%) 1200 (100%)

Figure 9: Results of perturbation testing: how the Null-
spec and Safe drivers failed, if at all, in repeated tests.
Nullspec testing was aborted when it damaged the device.

get out of sync with the device, after which no further
packets were sent or received. This does not compromise
the integrity or availability of the kernel or the device, so
the RVM has no obligation here. Figure 9 summarizes the
different cases encountered in our experiments. The Null-
spec driver completed more tests with no apparent fail-
ure than the Safe driver did, because the reference moni-
tor used for the Safe driver aggressively blocked any un-
known behavior—even if it might have been benign.

We hoped the perturbed Nullspec driver would cause
kernel livelock, starvation, or a crash. In practice, how-
ever, the likelihood of causing such behavior with random
perturbations is far below the likelihood of driver crashes
and stalls. The 31st run of the Nullspec test rendered the
device unusable: neither the Linux nor the Nexus driver
could thereafter initialize the card.7 That ended our Null-
spec perturbation testing. We rechecked our performance
results on a replacement card, but we do not plan further
perturbation testing.

In addition to perturbation testing, we wrote several
malicious drivers to execute specific attacks on the kernel
using the e1000’s interrupt and DMA capabilities:

• Livelock: The driver never acknowledges interrupts,
resulting in a flood of interrupt activity and starvation
for all other processes.

• DMA kernel crash: The driver uses the device to
write to kernel memory, resulting in a system crash.

• DMA kernel read: The driver sends a sensitive page
(e.g., containing a secret key) to a remote host.

• Direct kernel read/write: The driver constructs a
pointer and reads or writes sensitive data directly.

• DMA kernel code injection: The driver points a
DMA buffer pointer at system call code, then pings

7Would the reference monitor have prevented the damage if it had
been enabled for that test? We cannot be sure due to the inherent nonde-
terminism of peripheral devices, but we believe it would have. We ran
124 reference-monitored tests with no damage to the device.

a remote machine with attack code.8 The response is
written over the target system call implementation.
The attacking driver then invokes the system call to
gain control of the kernel.

• DMA read/write to other device: The driver uses
a ping to overwrite video memory, resulting in an
image appearing on the screen.

Not surprisingly, the livelock and DMA attacks succeed
when run as Unsafe or Nullspec drivers, all the attacks
succeed as Kernel drivers, and they are all are caught by
the RVM when run in Safe mode. The livelock attack is
prevented by the RVM terminating any driver that does
not acknowledge the interrupt by reading the interrupt
control register. The DMA attacks are prevented by the
RVM terminating any driver that attempts to transmit or
receive packets with any invalid addresses in the transmit
or receive buffer lists. Finally, any direct attempt to read
or write the memory of other drivers is blocked by hard-
ware isolation in all modes except Kernel.

6 Related Work

Several existing operating systems implement device
drivers in user space, for isolation or modularity, but with-
out monitoring I/O and DMA operations. Hence, these
systems do not defend against malicious operations by
drivers. The Michigan Terminal System [7], on the IBM
360 architecture, seems to be the earliest operating system
to implement device drivers as user programs. Dijkstra’s
THE multiprogramming system [9] is organized intolev-
els. Level 3 contains device drivers; level 0 implements
a scheduler and the interrupt dispatch routine; level 2 im-
plements semaphores, which are used to convey interrupts
to device drivers. The EL X8 computer that executed THE
did not support memory protection. Hence, THE drivers
are not isolated from each other or from the rest of the
system. The SUE separation kernel [24] organizes com-
ponents, including device drivers, into isolated domains
akin to hosts in a distributed system. SUE uses memory
protection to restrict each driver’s access to I/O ports, but
it provides no DMA or interrupt protection: DMA is ex-
cluded completely, and components are trusted to yield
control after each interrupt or task switch.

8The e1000 can retrieve any physical memory location by DMA and
send it as a network packet, or it can overwrite any physical memory lo-
cation with the contents of incoming packets. It cannot directly transfer
one memory page to another. To get around this, we useping packets;
most other hosts will echo a packet with arbitrary contents,which en-
ables us to copy from one local memory location to another by way of a
remote host.
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L3 [22] moves non-essential device drivers to user
space, allowing each driver access to a limited set of I/O
ports and delivering interrupts as inter-process messages.
The authors acknowledge that drivers requiring DMA ac-
cess are trusted, and drivers can cause system starvation
by disabling interrupts or by failing to acknowledge inter-
rupts.

Leslie et al. [20] implemented user-space device
drivers, including an e1000 driver, in Linux 2.6. These
drivers are most similar in design, isolation, and perfor-
mance to our Unsafe user-space drivers—they have de-
vice registers and DMA buffers directly mapped into the
drivers’ virtual memory, so they do not incur monitoring
overhead or context switches when performing I/O.

MINIX 3 [17] executes drivers in user space, with lim-
ited access to system calls and I/O ports. Drivers that
crash are reincarnated transparently to provide continu-
ing service. However, these mechanisms protect against
programming errors only, not against malicious drivers.

Nooks [28] and Shadow Drivers [27] provide isola-
tion and fail-over operation for drivers within the Linux
kernel, to prevent accidental overwriting of kernel struc-
tures. Nooks protects against common bugs, like acci-
dental writes to memory structures belonging to another
kernel component. Program rewriting techniques, such
as Software-based Fault Isolation (SFI) and its succes-
sors [11], implement similar isolation properties. Neither
Nooks nor SFI protects restricts what I/O operations are
sent to devices.

Microdrivers [14, 15] are a hybrid implementation of
Linux device drivers, with up to 65% of the driver running
in user space and only the most performance-sensitive
code remaining in the kernel. Microdrivers handle net-
work interrupts in the kernel, so they are not secure. Their
performance is comparable to the performance of Nexus
Unsafe drivers.

Some operating systems take steps to prevent mali-
cious drivers from misusing I/O ports or DMA trans-
fers. Mungi [21] (on Alpha and Itanium platforms) and
Scomp [12] (on custom hardware) use an IOMMU for
DMA protection. Singularity [19, 26] enforces type-safe
interactions between components, including the interac-
tions between drivers and devices. Originally, this type
safety meant unmediated access to a restricted set of ports
and memory. As IOMMU hardware becomes common,
Singularity will rely on IOMMUs to validate DMA oper-
ations. Singularity does not limit interrupt rates. Bierhoff
and Hawblitzel use an automated theorem prover to ver-
ify statically that Singularity device drivers comply with
devices specifications written in SPEC# [6]. These speci-
fications limit I/O and DMA misbehavior but not interrupt

rates or interrupt handling times.
Virtual machine monitors (VMMs) sometimes use

drivers running in a guest operating system to control de-
vices, instead of virtualizing all devices with drivers in
the VMM. Thesepass-through driversare inherently safe
for some devices, such as USB peripherals, but not for
other devices, such as disks or network cards. Xen [5,13]
puts some device drivers indriver domains, which are
protected against most crashes but not against malicious
behavior; hence, driver domains are trusted.

7 Conclusion

In traditional monolithic and microkernel operating sys-
tems, every flaw in a device driver is a potential secu-
rity hole given the absence of mechanisms to contain the
(mis)behavior of device drivers. We have applied the prin-
ciple of least privilege to Nexus device drivers by creat-
ing an infrastructure to run these drivers in user space and
by filtering their I/O operations through a reference val-
idation mechanism (RVM). The RVM is independent of
drivers and devices; device-specific information is gath-
ered into a device safety specification (DSS) that we com-
pile into a reference monitor. The RVM consults the ref-
erence monitor before allowing each I/O operation; any
disallowed operation results in the offending driver being
terminated.

An obvious question is whether or not the attacks our
RVM prevents are realistic. We do not know of malicious
drivers “in the wild” that use a device to escalate their
privileges, although we have built several of them. The
reason such drivers are not yet a real threat is probably that
production systems run most drivers in the kernel and in
the TCB, where violating security properties can be done
directly. Systems with drivers in user space are increas-
ingly common and will inspire attacks through devices.
Our RVM and DSS can prevent these attacks.
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Appendix: DSS Example

The following is an abridged version of our DSS for the Intel i810 audio device. It defines the device ID, followed
by the state variables and a reset routine. ANAMESsection then introduces labels for the various events associated
with I/O register operations and interrupts. Finally, aTRANSITIONSsection defines the allowed transitions for the
state machine. By default, upon receipt of an input, all transitions are checked, and actions are applied (in unspecified
order) for each satisfied predicate. Inside anordered block, transitions are checked sequentially only until a predicate
is matched; at most one action is applied inside the block. Several transitions in this DSS have empty actions—they
accept an input without changing the state of the state machine.

hardware: “PCI:8086:24d5”;
monitored region $RINGDMA; // Define a monitored region to contain DMA descriptors.
const$RING LEN = 8 * 32;
var $DMA ENABLED = 0; // Define a state variable: true when device DMA is active.
reset: C:{ // Restore device to state with no DMA or interrupts.

outb(0, $PORTIO[1].base + $CONTROLOFFSET); // Turn off playback DMA.
while(inb($PORTIO[1].base + $CONTROLOFFSET) != 0) ; // Wait for acknowledgment.
$DMA ENABLED = 0;

}

//**************** NAMES *******************
// Each line maps write, read, and readresponse operations on a register (address, size) to a logical name.
// Syntax:<offset, length> --> write name, readname, readresponsename;
names for$PORTIO[1], $MMIO[1]:
// Writes to base+0x10 with size=4 are known as writeplaybackdma base.
<0x10, 4> --> write playbackdmabase($VAL), safe, safe;
<0x16, 1> --> write status($VAL), safe, readresponsestatus($VAL);
<0x1b, 1> --> write control($VAL), safe, safe; // Reading the control register is always allowed.
names for$RING DMA mod 8: // Define names for writes to DMA descriptors.
<0x00, 4> --> write descriptorbase($ADDR, $VAL), safe, safe; // offsets 0, 8, 16, ...
<0x04, 4> --> write descriptorlen($ADDR, $VAL), safe, safe; // offsets 4, 12, 20, ...
names for$INTR[0]:
* --> i810 intr; // The only interrupt is named i810intr.

//*************** TRANSITIONS **************
// Syntax:Pi { Ai }
// Modifying the DMA base register is only allowed if DMA is not running and the address points to monitored memory.
write playbackdmabase(val) && $DMA ENABLED == 0 && exists($MONITORED[i]) suchthat

range(val, $RING LEN) in $MONITORED[i] { $RING DMA = range(val, $RING LEN); }

// Starting DMA is allowed only when the DMA base register points to 32 pointers to pinned, unmonitored memory.
write control(val) && (val & 0x01) == 1 && $RING DMA != null && ( forall (k) = 0..31 (exists($UNMONITORED[j])

suchthat range(fetch($RING DMA.base + 8*k, 4),fetch($RING DMA.base + 8*k+4, 2))in $UNMONITORED[j]))
{ $DMA ENABLED = 1; }

write control(val) && (val & 0x01) == 0{ $DMA ENABLED = 0; }

// Changing DMA descriptors is legal if DMA is inactive, or ifthe modified entry points to pinned, unmonitored memory.
write descriptorbase(addr, val) && ($DMAENABLED == 0) {}
write descriptorbase(addr, val) && ($DMAENABLED != 0) &&

(exists($UNMONITORED[j]) suchthat range(val, fetch(addr + 4, 2))in $UNMONITORED[j]);
write descriptorlen(addr, val) && ($DMA ENABLED == 0){}
write descriptorlen(addr, val) && ($DMA ENABLED != 0) &&

(exists($UNMONITORED[k]) suchthat range(fetch(addr - 4, 4),bits(val, 0..15))in $UNMONITORED[k]);

// The i810 interrupt acknowledgment protocol: first, the driver checks if the interrupt came from i810 by reading statusbits 2..4;
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// then, if so, acknowledges it by writing status bits 2..4.
ordered { // In an “ordered” block, transitions are checked only untilthe first match.

readresponsestatus(val) &&bits(val, 2..4) == 0{ $INTR[0].status =idle; } // i810 is not asserting an interrupt.
readresponsestatus(val){} // Otherwise interrupt is still pending.

}
write status(val) &&bits(val, 2..4) != 0{ $INTR[0].status =idle; } // Acknowledging interrupts is legal.

i810 intr <16, 1, 1> {} // Interrupt is rate-limited to 16 per second, no bursts.
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