
Polynomial Approximation onReal-Analyti Varieties in Cn
John T. Anderson, Alexander J. Izzo, and John WermerAbstratWe prove: Let � be a ompat real-analyti variety in an open set 
 � Cn. As-sume (i) � is polynomially onvex and (ii) every point of � is a peak point for P (�).Then P (�) = C(�). This generalizes a previous result of the authors on polynomialapproximation on three-dimensional real-analyti submanifolds of Cn.

1. IntrodutionWe onsider the problem of approximating arbitrary ontinuous funtions on a ompatsubset X of n-dimensional omplex Eulidean spae Cn by polynomials in the oordinatefuntions z1; : : : ; zn. We let C(X) denote the spae of all ontinuous omplex-valued fun-tions on X, with norm kgkX = maxfjg(z)j : z 2 Xg, and we let P (X) denote the losureof the set of polynomials in C(X). The polynomially onvex hull of X will be denoted X.That is, X = fz 2 Cn : jQ(z)j � kQkX for every polynomial QgTwo neessary onditions for P (X) = C(X) are:(i) X is polynomially onvex, i.e. X = X;(ii) Every point of X is a peak point for P (X), i.e., given p 2 X, there exists f 2 P (X)with f(p) = 1 and jf j < 1 on X n fpg.2000 Mathematis Subjet Classi�ation. Primary 32E30, Seondary 46J10.
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With a general uniform algebra A on a ompat metri spae X replaing P (X), andwith (i) replaed by the ondition that the maximal ideal spae of A oinides with X, itwas one onjetured that together these two neessary onditions for A = C(X) were alsosuÆient to imply A = C(X). However, a ounterexample to this \peak-point onjeture"was produed by Brian Cole in his 1968 thesis (see the appendix to [5℄, or [12℄, setion 19).Additional ounterexamples to the peak point onjeture have been given in the ontextof polynomial and rational approximation in several omplex variables. In partiular theseounterexamples show that onditions (i) and (ii) above are not suÆient for P (X) = C(X).For more on this, see [2℄, [3℄, [4℄ and [9℄.In [2℄ the �rst two authors established a peak-point result for two-manifolds:Theorem 1.1 LetM be a ompat two-dimensional di�erentiable manifold, and A a uniformalgebra on M generated by ontinuously di�erentiable funtions. Assume that the maximalideal spae of A is M , and that eah point of M is a peak point for A. Then A = C(M).An example of Izzo [9℄ shows that Theorem 1.1 fails for uniform algebras on smooth threemanifolds. However, in [3℄ the authors established the following:Theorem 1.2 Let � be a real-analyti three-dimensional submanifold of Cn. Let X be aompat subset of � suh that �X (the boundary of X relative to �), is a two-dimensionalsubmanifold of lass C1. If X satis�es onditions (i) and (ii) above, then P (X) = C(X).Our purpose in this note is to extend Theorem 1.2 to real-analyti varieties of arbitrarydimension in Cn. We prove:Theorem 1.3 Let � be a ompat real-analyti variety in an open set 
 � Cn. Assume(i) � = b� and (ii) every point of � is a peak point for P (�). Then P (�) = C(�).If �Bn denotes the boundary of the unit ball in Cn, then every point of �Bn is a peakpoint for polynomials, and so as an immediate onsequene of Theorem 1.3 we have thefollowing:Corollary 1.4 If � � �Bn is a ompat polynomially onvex real-analyti variety, thenP (�) = C(�). 2



In order to explain the idea of the proof of Theorem 1.3, we reall the proof of The-orem 1.2. The main tool is a result of H�ormander and Wermer [8℄ (proved by them forsuÆently smooth manifolds, and later generalized by O'Farrell, Preskenis and Walsh [11℄to C1 manifolds) that, in essene, redues questions of approximation on subsets of realsubmanifolds of Cn to approximation on the points where the tangent spae to the manifoldontains a omplex line. The following dual formulation suÆes (see the disussion followingProposition 2.3 of [3℄):Theorem 1.5 Let X be a polynomially onvex ompat subset of Cn, and let X0 be aompat polynomially onvex subset of X suh that X n X0 is a totally real submanifold ofCn, of lass C1. If � is a measure on X suh that RX f d� = 0 for all f 2 P (X), then � issupported on X0. In partiular, P (X) = C(X) if and only if P (X0) = C(X0).To establish Theorem 1.2, one shows, under assumptions (i) and (ii), that the set ofpoints in X where � has a omplex tangent is a real-analyti variety V of dimension atmost two. To show that P (X) = C(X), it is enough, by Theorem 1.5, to show thatP (� X [ V ) = C(� X [ V ). Applying Theorem 1.5 again, one redues the prob-lem to showing that P (�X [V �) = C(�X [V �), where V � is the union of the singular set ofthe variety V together with the set of regular points of V at whih V has a omplex tangent.Theorem 1.1 implies that P (�X) = C(�X). Using the peak-point property (ii), V � an beshown to have two-dimensional Hausdor� measure zero. This suÆes to show (see Lemma3.1 of [3℄) that P (�X [ V �) = C(�X [ V �), and ompletes the proof.The fat that the two-dimensional Hausdor� measure of V � is zero is essential to the proofwe have just desribed; this allows one to apply the Hartogs-Rosenthal theorem on rationalapproximation in the plane to ertain projetions. In attempting to generalize Theorem 1.2to real-analyti manifolds of dimension greater than three, one would like to proeed in asimilar way: redue the problem of approximation on � to approximation on V , where V isthe set of points in � at whih � has a omplex tangent. Assumptions (i) and (ii) imply, asbefore, that V is a variety whose dimension is stritly less than the dimension of �, and soone hopes to proeed by indution on dimension, repeatedly applying Theorem 1.5 as before,eventually reduing to approximation on a suÆiently small set (two-dimensional Hausdor�3



measure zero). The fat that at eah stage one has to onsider approximation on varietiesmakes it desirable, for purposes of the indution, to prove Theorem 1.3 in the ategory ofvarieties, rather than restriting to real-analyti manifolds. However, a problem arises: thesingular set of a real-analyti variety (unlike the ase of omplex-analyti varieties) need notitself be a variety. This problem fores a slightly di�erent approah. We show that loallythe union of the set of omplex tangent points and the singular set of eah variety in questionis ontained in a variety of smaller dimension, and this allows the indution to proeed.2. Real-Analyti VarietiesIn this setion we review the basi fats about real-analyti varieties neessary for the proofof Theorem 1.3.If U is an open subset of Rm, C!(U) will denote the set of all real-valued funtions whihare real-analyti in U . If F is a subset of C!(U), we setVU(F) = fx 2 U : f(x) = 0; 8f 2 Fg:A subset � of an open set 
 � Rm is said to be a (real-analyti) variety in 
 if for eahp 2 
 there exists an open neighborhood U � 
 of p and a �nite set F � C!(U) with� \ U = VU(F). It follows that � is a relatively losed subset of 
; we say � is a ompatvariety in 
 if it is a ompat subset of 
. The lass of varieties is losed under �nite unionsand intersetions.The dimension of a real-analyti variety � is the largest natural number d suh that forsome p 2 �, there exists a neighborhood U of p suh that �\U is a real-analyti submanifoldof U of dimension d, and the set of regular points of �, denoted �reg, is the set of pointsp 2 � with this property. �reg is a relatively open subset of �. Its omplement, the set ofsingular points of �, is denoted �sing.A variety � in 
 is said to be irreduible if whenever � = �1 [ �2 with �1;�2 varietiesin 
, then either � = �1 or � = �2. If � is an irreduible variety in 
, and �0 is a propersubset of � that is also a variety in 
, then dim(�) > dim(�0) (see [6℄, Theorem 3.4.8,assertion (15)). 4



Unlike the ase of omplex analyti varieties, the singular set of a real-analyti varietyneed not itself be a variety. Moreover, a real-analyti variety is not neessarily the union ofa �nite number of irreduible varieties. However, we have the following loal properties (see[10℄, p. 31-42, espeially Proposition 5, and [6℄, setion 3.4.10):(a) If � is irreduible, then for eah p 2 �sing there exists a neighborhood U of p and afuntion Æ 2 C!(U) not vanishing identially on � \ U so that�sing \ U � VU(fÆg) \ � � �Moreover, if d = dim(�), there is a �nite set G = fg1; : : : ; gm�dg � C!(U) so that(� \ U) n� = VUn�(G)with dg1; : : : ; dgm�d linearly independent on U n�;(b) If � is a variety in 
, then for eah p 2 � there is a neighborhood U of p and a �nitenumber of irreduible varieties Z1; : : : ; Zs in U so that � \ U = [sk=1Zk;() Let Hr denote r-dimensional Hausdor� measure. If � is a variety of dimension d in 
then for eah ompat subset X of 
, Hd(� \X) <1 and Hd�1(�sing \X) <1.We now onsider real-analyti varieties in an open subset 
 of Cn, identi�ed with R2n.If M is a real submanifold of 
, of lass C1, we say that M has a omplex tangent at p 2Mif the real tangent spae TpM of M at p ontains a nontrivial omplex subspae of Cn. Thisis equivalent to the ondition that the restrition to M of any (m; 0) form vanishes at p,where m is the real dimension of M (see [3℄, Lemma 2.5). The manifold M is said to betotally real if it has no omplex tangents. If � is a variety in 
, � will denote the set ofpoints p 2 �reg suh that �reg has a omplex tangent at p. By expressing the vanishing ofeah (m; 0) form as the vanishing of an (m�m) minor of the matrix J = ((�zl=�uk)), where(u1; : : : ; um) are loal real-analyti oordinates onM , we see that � is a variety in 
n�sing.Set �� = �sing [�. Note that �n�� is a totally real, real-analyti submanifold of 
n�sing.
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Lemma 2.1 Let � be a d-dimensional variety in an open set 
 � Cn. Assume dim(�) < d.Then for eah p 2 ��, there exists an open neighborhood U � 
 of p and a variety Y in Uwith dim(Y ) < d and �� \ U � Y � � \ UProof: Fix p 2 �, take U and Z1; : : : ; Zs as in (b). Let dj = dim(Zj), and setJ = fj : 1 � j � s and dj = dg. For eah j 2 J , we proeed as follows: shrinking Uif neessary, using (a) we obtain a funtion Æj 2 C!(U), not vanishing identially on Zj \U ,with (Zj)sing � �j � VU(fÆjg) \ Zjand a set G(j) � C!(U) of 2n� dj funtions whose di�erentials are linearly independent onU n�j, so that Zj n�j = VUn�j (G(j)):Using the funtions in G(j) and the remarks on the omplex tangent set preeding the state-ment of Lemma 2.1, we may onstrut a family �(j) of funtions in C!(U) so that(Zj) = VUn�j (�(j) [ G(j)):Set Xj = �j [ VU(�(j) [G(j)). Then Xj is a variety in U ontaining Z�j . Our assumption ondim(�) together with the irreduibility of Zj implies dim(Xj) < d. Let X be the union ofthe Xj, j 2 J . Let Z be the union of all pairwise intersetions of the Zj, together with theunion of all Zj; j =2 J . Set Y = X [ Z. Then �� \ U � Y � � \ U , and dim(Y ) < d. 23. Proof of Theorem 1.3We let B(p; r) denote the open ball of radius r entered at p. We will use repeatedly thefat (Lemma 2.1 of [3℄) that properties (i) and (ii) are inherited by ompat subsets of �.
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Lemma 3.1 Let � be a ompat d-dimensional variety in an open set 
 � Cn. Assumethat � is polynomially onvex and that eah point of � is a peak point for P (�). Then foreah p 2 �, there exist arbitrarily small r > 0 and varieties Y1; : : : ; Yd in B(p; r) so that ifY0 = � \B(p; r), then for 1 � j � d we have(1) Y �j�1 � Yj � Yj�1;(2) dim(Yj) � d� j;Proof: The proof is by indution on j, 1 � j � d. Note that the hypotheses on � implythat � has no interior relative to � (see [3℄, Lemma 3.2). Hene dim(�) < d. We hooser1; Y1 as follows: in ase p 2 � n ��, take r1 > 0 so that B(p; r1) \ �� = ;, and take Y1 = ;.If p 2 ��, Lemma 2.1 implies that there exists r1 > 0 and a variety Y1 in B(p; r1) so thatdim(Y1) � d� 1 and B(p; r1) \ �� � Y1 � B(p; r1) \ �Note that in either ase, both (1) and (2) hold for j = 1. Now assume by indution that forsome k with 1 � k < d, r1; : : : ; rk > 0 and Y1; : : : ; Yk have been hosen with r1 � r2 : : : � rk,and Y1; : : : ; Yk varieties in B(p; rk), so that (1) and (2) hold for all j � k. We obtainrk+1; Yk+1 as follows: if p 2 Yk n Y �k , take Yk+1 = ; and rk+1 = rk. If p 2 Y �k , use Lemma 2.1to produe rk+1, 0 < rk+1 � rk and a variety Yk+1 withB(p; rk+1) \ Y �k � Yk+1 � B(p; rk+1) \ Ykand dim(Yk+1) < dim(Yk) � d� k (here we again use Lemma 3.2 of [3℄). Then (1) and (2)will hold for j � k + 1. By indution, we an thus hoose r1; : : : ; rd > 0 and Y1; : : : ; Yd sothat (1) and (2) hold for j � d; take r = rd. 2We now turn to the proof of Theorem 1.3. By duality, it suÆes to show that any measure� on � with the property that Z� g d� = 0 (1)for all g 2 P (�) must be the zero measure. Fix a measure � satisfying (1). We will showthat for eah point p 2 �, there is a neighborhood of p lying outside the support of �. Fix7



p 2 �, and hoose r > 0, and Y0; : : : ; Yd as onstruted in Lemma 3.1. Now there must be alargest number j suh that � is supported on (� nB(p; r)) [ Yj. But for j < d,[(� nB(p; r)) [ Yj℄ n [(� nB(p; r)) [ Yj+1℄ = Yj n Yj+1is a totally real submanifold of Cn. By Theorem 1.5, if � is supported on (� nB(p; r))[ Yj,then � is supported on (�nB(p; r))[Yj+1. By indution, � is supported on (�nB(p; r))[Yd.Note that dim(Yd) = 0, so the variety Yd is a disrete point set, and therefore ountable.Sine every point of � is a peak point for P (�), � annot have nonzero mass at any singlepoint, and hene j�j(Yd) = 0. Thus � is supported on � nB(p; r), and the proof is omplete.2Referenes[1℄ H. Alexander and J. Wermer, Several Complex Variables and Banah Algebras, Thirdedition, Springer, 1998.[2℄ J. Anderson and A. Izzo, A Peak Point Theorem for Uniform Algebras Generated bySmooth Funtions On a Two-Manifold, Bull. London Math. So. 33 (2001), pp. 187-195.[3℄ J. Anderson, A. Izzo and J. Wermer, Polynomial Approximation on Three-DimensionalReal-Analyti Submanifolds of Cn, Pro. Amer. Math. So. 129 (2001), pp. 2395{2402.[4℄ R. F. Basener, On Rationally Convex Hulls, Trans. Amer. Math. So. 182 (1973),pp. 353{381.[5℄ A. Browder, Introdution to Funtion Algebras, Benjamin, New York 1969.[6℄ H. Federer, Geometri Measure Theory, Springer, 1969.[7℄ M. Freeman, Some Conditions for Uniform Approximation on a Manifold, in: FuntionAlgebras, F. Birtel (ed.), Sott, Foresman and Co., Chiago, 1966, pp. 42{60.[8℄ L. H�ormander and J. Wermer, Uniform Approximation on Compat Subsets in Cn,Math. Sand 23 (1968), pp. 5-21. 8
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