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Approximation by CR Funtions on the Unit Sphere in C 2John T. Anderson and John WermerDediated to Joe Cima on the oasion of his seventieth birthdayAbstrat. For a smoothly bounded relatively open subset 
 of the unitsphere in C 2 we derive, using a kernel H(�; z) introdued by G. Henkin, ananalogue of the Cauhy-Green formula in the plane:�(z) = A(z) + 14�2 Z
 ��(�)H(�; z)!(�)� 14�2 Z�
 �(�)H(�; z)!(�); z 2 
valid for � 2 C1(
), where A is a CR funtion on 
 and !(�) = d�1 ^ d�2:We employ this formula to study rational approximation on ompat subsetsK of S, by using it to estimate the distane in C(K) of � to the CR funtionson a neighborhood 
 of K. This requires an examination of the integralover �
 appearing in the above formula, whih we denote by F
(z); in someirumstanes we an show that F
 also de�nes a CR funtion on 
, andthereby estimate the distane of � to the CR funtions on 
 in terms of X(�),where X is the tangential Cauhy-Riemann operator on S. For ertain K wean show that R(K) = C(K) by showing that the distane of zj to the CRfuntions on 
 tends to zero as 
 shrinks to K.1. IntrodutionLet D be a smoothly bounded domain in the omplex plane and let f be afuntion in C1(D). The Cauhy-Green formula for D allows us to represent thevalue of f at a point z 2 D in terms of the values of f on �D and of the one-form�f on D:(1.1) f(z) = 12�i Z�D f(�)� � z d� � 12�i ZD �f(�) ^ d�� � z :We note the following onsequenes of (1.1). Let � be a �nite omplex measure onC , of ompat support. The Cauhy transform �̂ of � is de�ned by�̂(�) = Z d�(z)z � � ; z 2 C :Given a funtion f 2 C10 (C ), we then have(1.2) ZC fd� = 12�i ZC �̂(�)�f(�) ^ d�:2000 Mathematis Subjet Classi�ation. Primary 32A25, Seondary 32E30.0000 (opyright holder)1



2 JOHN T. ANDERSON AND JOHN WERMEREquation (1.2) follows from (1.1) by letting D be a large disk, multiplying by � andintegrating over C .Given a ompat set K � C , C(K) is the Banah algebra of ontinuous fun-tions on K with norm kfkK = maxfjf(z)j : z 2 Kg. For a smoothly bounded planedomain D, let A(D) denote the spae of funtions g 2 C(D) with g holomorphion D. For f 2 C1(�D), setF (z) = 12�i Z�D f(�)� � z d�; z 2 D:Then F extends to D (see [3℄) with F 2 C1(D), and in partiular F 2 A(D). Theformula (1.1) gives, for z 2 D,(1.3) jf(z)� F (z)j = ���� 12�i ZD �f�� (�) d� ^ d�� � z ���� � 1� maxD �����f�� ���� � �ZD dm2(�)j� � zj � ;where m2(�) is two-dimensional Lebesgue measure. An inequality of Mergelyan(see [5℄) states that(1.4) ZD dm2(�)j� � zj � 2p� �pm2(D):It follows by ontinuity of f and F on D that(1.5) dist(f;A(D)) � inffkf �	kD :  2 A(D)g � 2p� �maxD �����f�� ����pm2(D):For a ompat setK � C , let R(K) be the losure in C(K) of rational funtionsholomorphi in a neighborhood of K. As a orollary of (1.5) we obtain the followinglassial result.Theorem 1.1 (The Hartogs-Rosenthal Theorem). Let K be a ompat set inC with m2(K) = 0. Then R(K) = C(K).Proof. Fix f 2 C1(C ). Choose a sequene of open, smoothly bounded setsfDng dereasing to K. Fix � > 0. By (1.5), for eah n there exists Fn 2 A(Dn)with kf � FnkDn < 2p� �maxDn �����f�� ����pm2(Dn) + �:By Runge's Theorem, there exists rn 2 R(K) suh that kFn� rnkK < �. It followsthat kf � rnkK < 2p� �maxD1 �����f�� ����pm2(Dn) + 2�:Sine m2(Dn) ! m2(K) = 0 as n ! 1, we get kf � rnkK < 3� for n suÆientlylarge. As � was arbitrary, f jK 2 R(K). Restritions of funtions in C1(C ) to Kare dense in C(K), so R(K) = C(K).Our goal in this paper is to study the above situation when the omplex planeis replaed by the unit sphere S in C 2 , and analyti funtions on a domain in C arereplaed by CR funtions on a domain on S. Our work uses the kernel introduedby G. Henkin in [6℄. Related integral formulas are given by Chen and Shaw in [4℄.In setion 2 we desribe Henkin's kernel and the analogues of formulas (1.1) and(1.2) on the sphere S. In setion 3 we give a Cauhy-Green formula for a smoothlybounded domain on S. The remainder of the paper is devoted to a study of theintegrals appearing in this formula and appliations to approximation results.



APPROXIMATION BY CR FUNCTIONS ON THE UNIT SPHERE IN C2 32. Henkin's kernel for SWe denote by B the open unit ball in C 2 , and let S = �B be the unit sphere.Points in C 2 will normally be written as z = (z1; z2) or � = (�1; �2), and theHermitian inner produt as h�; zi � �1z1 + �2z2. The standard invariant three-dimensional measure on S is written � (note: � is not normalized). We will alsofrequently make use of the 2-form !(�) � d�1 ^ d�2. We denote by A(B ) the ballalgebra onsisting of all funtions ontinuous on the losure of B and holomorphion B . If 
 is an open subset of S, we say g 2 C1(
) is a smooth CR funtionon 
, if Xg = 0 on 
, where X is the tangential Cauhy-Riemann operator on S.Expressed in the oordinates of C 2 ,X = z2 ��z1 � z1 ��z2 :Any funtion holomorphi in a neighborhood of 
 in C 2 is a smooth CR funtionon 
. Using the fat that for smooth �(2.1) �� ^ ! = 2(X�) d�as measures on S, we see using Stokes' theorem that g is a smooth CR funtion on
 if and only if(2.2) Z
 �� � g ^ ! = 0for every � 2 C1(C 2 ) whose support meets S in a ompat subset of 
. We saythat g 2 C(
) is a ontinuous CR funtion on 
, and write g 2 CR(
), if (2.2)holds for all suh �. It follows easily from (2.2) that CR(
) is losed under uniformonvergene on ompat subsets of 
. Sine every g 2 A(B ) is a uniform limit ofpolynomials on S, it follows that g 2 CR(S) if g is in the ball algebra and thatg 2 A(B ) is a smooth CR funtion on 
 whenever g ��
 2 C1(
) . For a ompatK � S, let CR(K) be the uniform losure in C(K) of funtions that are CR insome relatively open neighborhood of K in S.As a replaement for the Cauhy kernel (� � z)�1 Henkin gave the kernelH(�; z) = �1z2 � �2z1j1� hz; �ij2 ; �; z 2 S:On S�S;H is real-analyti o� the diagonal f� = zg, where hz; �i = 1. We onsideras an analogue of the Cauhy transform �̂ of a measure � the transformK�(�) = ZS H(�; z) d�(z); � 2 S;for a measure � on S. The integral de�ning K� onverges absolutely a.e-d� on S,and K� 2 L1(S; �). Under the assumption that � is a measure on S orthogonalto the restrition to S of every holomorphi polynomial on C 2 , Henkin proves(2.3) ZS � d� = 14�2 ZS �� ^K� � !; � 2 C1(S):The orthogonality assumption on � is neessary sine the right-hand side of (2.3)vanishes if � is the restrition to S of a polynomial.We reord below some useful properties of H and K�:



4 JOHN T. ANDERSON AND JOHN WERMER(i) H(�; z) = �H(z; �);(ii) If U is a unitary transformation of C 2 with det(U) = 1, H(U�; Uz) = H(�; z);(iii) X [H(�; z)℄ = �(1� hz; �i)�2 (di�erentiation is in the � variable);(iv) K� 2 CR(S n supp(�)).Properties (i) - (iii) are routine omputations, while (iv) follows immediatelyfrom (2.3) and the de�nition (2.2) by taking by taking � supported on an open setdisjoint from supp(�).As an analogue of the Cauhy-Green formula (1.1), we have the following rep-resentation on S: given � 2 C1(S), there exists a funtion � 2 A(B ) suh that(2.4) �(z) = �(z) + 14�2 ZS ��(�) ^H(�; z) !(�); z 2 S:This formula, whih we all the Cauhy-Green formula on S follows diretly from(2.3) as follows: set K(z) = ZS ��(�) ^H(�; z) !(�):Choose a measure � on S with � orthogonal to polynomials. ThenZSK(z) d�(z) = ZS �ZS H(�; z) d�(z)���(�) ^ !(�) = ZS ��(�) ^K�(�) !(�):By (2.3), ZS(4�2��K) d� = 0:Sine this holds for every � orthogonal to polynomials, the Hahn-Banah Theoremimplies that 4�2��K belongs to the uniform losure of polynomials on S, and sois the restrition to S of a funtion in A(B ), giving (2.4). Other proofs of (2.4) aregiven in [4℄ and [1℄.3. The Cauhy-Green formula for a domain on SLet 
+ be a smoothly bounded domain on S, and �x a funtion � 2 C1(
+).We wish to generalize formula (2.4) to this situation. Let 
� denote the omplementof 
+ on S. Note that �
� = ��
+ as oriented manifolds.Theorem 3.1. For z 2 
+ we have�(z) = A(z) + 14�2 Z
+ ��(�) ^H(�; z) !(�)� 14�2 Z�
+ �(�)H(�; z) !(�);where A 2 CR(
+).Proof. We form a smooth extension ~� of � to S. By (2.4) there exists~� 2 A(B ) suh that for z 2 S,~�(z) = ~�(z) + 14�2 ZS � ~�(�) ^H(�; z) � !(�)and so(3.1) ~�(z) = ~�(z)+ 14�2 Z
+ ��(�)^H(�; z) !(�)+ 14�2 Z
� � ~�(�)^H(�; z) !(�):



APPROXIMATION BY CR FUNCTIONS ON THE UNIT SPHERE IN C2 5We rewrite the last term of this equation as follows: for z 2 
+ �xed, the funtion� 7! H(�; z) is smooth on 
�, and so we may use Stokes' theorem to writeZ�
� ~�(�)H(�; z) !(�) = Z
� d[ ~�(�)H(�; z) !(�)℄= Z
� �[ ~�(�)H(�; z) !(�)℄= Z
� � ~�(�) ^H(�; z) !(�) + Z
� ~�(�) �H(�; z) ^ !(�):Using (2.1) and property (iii) of the Henkin kernel the seond integral on theright-hand side of the last equation an be expressed as�2 Z
� ~�(�) d�(�)(1� hz; �i)2 :Therefore,(3.2) Z
� � ~�(�) ^H(�; z) !(�) = Z�
� ~�(�)H(�; z)!(�) + 2 Z
� ~�(�) d�(�)(1� hz; �i)2 ;and so we may rewrite (3.1) as(3.3) ~�(z) = A(z) + 14�2 Z
+ ��(�) ^H(�; z)!(�)� 14�2 Z�
+ �(�)H(�; z)!(�)for z 2 
+, where(3.4) A(z) = ~�(z) + 12�2 Z
� ~�(�) d�(�)(1� hz; �i)2 :As noted above, sine ~�(z) 2 A(B ), ~� 2 CR(S), while the seond term on theright-hand side of (3.4) is holomorphi in a neighborhood of 
+ in C 2 , and henebelongs to CR(
+). This ompletes the proof.We refer to the formula appearing in Theorem 3.1 as the Cauhy-Green formulafor 
+. Our goal in the remainder of this paper is to suggest how the formula ofTheorem 3.1 an be used to derive approximation results for ertain ompat setsK � S, in muh the same way that we employed the lassial Cauhy-Green formulato derive the approximation results in setion 1. We �rst note a simple orollary ofTheorem 3.1; f. the proof of the Hartogs-Rosenthal theorem in setion 1.Corollary 3.2. Let K be a ompat subset of S, and suppose for eah � > 0,
� is a smoothly bounded domain in S ontaining K, with lim�!0+ �(
�) = 0. For� 2 C1(S) set F�(z) = 14�2 Z�
� �(�)H(�; z) !(�); z 2 
�:If for eah � > 0 there is a funtion h� 2 CR(
�) so that lim�!0+ kF� � h�kK = 0,then �jK 2 CR(K).Proof. Apply the formula of Theorem 3.1 to the domain 
� to obtain forz 2 
�,(3.5) �(z) = A(z)� h�(z)� (F�(z)� h�(z)) + 14�2 Z
� ��(�) ^H(�; z) !(�)



6 JOHN T. ANDERSON AND JOHN WERMERwhere A�h� 2 CR(
�). By hypothesis, kF��h�kK tends to zero as �! 0+, whilethe uniform integrability of H in z implies that the last term on the right of (3.5)tends to zero uniformly in z as �! 0+ (see the proof of Lemma 4.1 below), and solim�!0+ k�� (A+ h�)kK = 0;implying � 2 CR(K).As Corollary 3.2 shows, the study of approximation by CR funtions on ompatsubsets of S an be redued to the study of CR approximation of integrals of theform F
;�(z) = Z�
 �(�)H(�; z) !(�):for smoothly bounded neighborhoods 
 of K. The remainder of this paper isdevoted to an examination of suh integrals. In setion 4 we show that for ertain
 and �, F
;� 2 CR(
). In this ase the formula of Theorem 3.1 immediatelyyields an estimate similar to (1.5). However, in general one annot expet that Fwill be a CR funtion on 
. In setions 5 and 6 we establish approximation resultson ertain ompat subsets K of S with �(K) = 0 by approximating F
� ;� by CRfuntions on a sequene of domains 
� shrinking to K, and applying Corollary 3.2.Beause the Cauhy-Green formula for domains on S lends itself to the studyof approximation by CR funtions, it is worthwhile to omment on the relationshipbetween the spae CR(K) and the spaes A(K); R(K) (onsisting of uniform limitsonK of funtions holomorphi in neighborhood ofK, and rational and holomorphiin a neighborhood of K, respetively.) Sine any funtion holomorphi in a neigh-borhood U of K in C 2 is a CR funtion on U \ S, it follows that A(K) � CR(K).On the other hand, if  2 CR(
) for some open neighborhood of K in S, it iswell-known that there exists an open subset U of B ontaining 
 in its losure, anda funtion ~ holomorphi in U and ontinuous on U with ~ =  on 
. There existst < 1 so that tz 2 U for all z 2 K, and so the funtion z 7! ~ (tz) is holomorphiin a neighborhood of K in C 2 . As t ! 1�, the funtions ~ (tz) approah  uni-formly on K. It follows that CR(K) � A(K), and hene CR(K) = A(K). By theStone-Weierstrass Theorem, A(K) = C(K) if and only if the onjugate oordinatefuntions fz1; z2g belong to A(K); if (say) z2 6= 0 on K � S, then the relationz2 = (1� z1z1)=z2 shows that A(K) = C(K) if and only if z1 2 A(K).Reall that a ompat subsetK of C n is said to be rationally onvex if given anypoint z 2 C n nK, there is a polynomial P with P (z) = 0 but P 6= 0 on K. Rationalonvexity is a neessary, but far from suÆient, ondition for R(K) = C(K) whenn > 1. Rihard Basener [2℄ onstruted rationally onvex subsets K of S for whihR(K) 6= C(K). Basener's sets have positive �-measure. We have been motivatedby the following analogue of the Hartogs-Rosenthal Theorem, for whih we have noproof or ounterexample.Conjeture 3.3. Let K be a rationally onvex subset of S with �(K) = 0.Then R(K) = C(K).If K is rationally onvex, then it an be shown that A(K) = R(K), so that bythe above remarks, rational approximation onK is equivalent to CR approximation.



APPROXIMATION BY CR FUNCTIONS ON THE UNIT SPHERE IN C2 74. A speial aseLemma 4.1. Given a domain 
+ � S, and � 2 C1(
+), suppose thatF (z) = Z�
+ �(�)H(�; z) !(�)de�nes a CR funtion on 
+. Then for any ompat subset K of 
+,(4.1) dist(�;CR(K))) � inffk��	kK : 	 2 CR(K)g � C
+ � kX(�)k
+for a positive onstant C
+ independent of � and K with the property that for every� > 0, there exists Æ > 0 so that �(
+) < Æ =) C
+ < �.Proof. By Theorem 3.1,(4.2) �(z) = A(z) + 14�2 Z
+ ��(�) ^H(�; z)!(�)� 14�2 Z�
+ �(�)H(�; z)!(�)with A 2 CR(
+). By hypothesis, the seond integral on the right of (4.2) de�nesa funtion in CR(S n �
+) and so�(z) = A1(z) + 14�2 Z
+ ��(�) ^H(�; z)!(�)= A1(z) + 12�2 Z
+ X(�)(�)H(�; z)d�(�)with A1 2 CR(
+). Thus for any ompat K � 
+,dist(�;CR(K)) � 12�2 max
+ jX(�)j Z
+ jH(�; z)j d�(�):Set C
+ = supz2
+(1=2�2) R
+ jH(�; z)j d�(�). By the unitary invariane of Hand d�,Z
+ jH(�; z)j d�(�) = ZUz(
+) jH(�; z0)j d�(�) � ZS jH(�; z0)j <1where z0 = (1; 0) and Uz is a unitary transformation with det(Uz) = 1 taking z toz0. Thus C
+ is �nite and (4.1) holds. Moreover, sine H(�; z0) 2 L1(d�), given� > 0 there exists Æ > 0 so that whenever Y is a measurable subset of S with�(Y ) < Æ, then RY jH(�; z0)jd�(�) < �. The laim regarding C
+ then follows bynoting that for every z, �(
+) = �(Uz
+).Remark 4.2. The orresponding estimate for 
 = S (without hypothesis on�) is given in [1℄, Theorem 4.1.Next we identify a speial ase in whih the integral F appearing in Lemma4.1 an be shown to be a CR funtion on 
+.Lemma 4.3. Let 
+ be a smoothly bounded domain on S and let � 2 C1(
+).Suppose there exists a smooth 3-manifold-with-boundary � in C 2 with �� = �
+,and a funtion ~� smooth on � and holomorphi in a neighborhood of � n ��, with� = ~� on �
+. Then F (z) = Z�
+ �(�)H(�; z) !(�)belongs to CR(S n �
+).



8 JOHN T. ANDERSON AND JOHN WERMERProof. Let � be the measure �! j�
+ . For any polynomial P , by Stokes'theorem we haveZS Pd� = Z�
+ P� ! = Z� d(P ~� !) = Z� �(P ~� !) = 0by assumption on �. Therefore, K� 2 CR(S n �
+). ButK�(z) = ZS H(�; z) d�(�) = �F (z):By property (iv) of K� above (setion 2), K� 2 CR(S n supp(�)) = CR(S n �
+),so F 2 CR(S n �
+).Example 4.4. As a �rst example of the situation onsidered in Lemma 4.2,take 
+ = f� 2 S : Im(�2) > 0g; � = fz 2 B : Im(�2) = 0g; �(�) = �2:Then ~�(�) = �2 extends � from �
+ holomorphially to a neighborhood of �, andso F (z) = Z�
+ �2H(�; z) !(�)Example 4.5. For 0 < r < 1, let Tr be the torusf� 2 S : j�1j = rg:The three-manifold �r = f� 2 B : j�1j = rg has boundary Tr. Sine for � 2 Tr�1 = r2�1 ; �2 = 1� r2�2 ;while �1; �2 6= 0 near �r, both �1 and �2 extend holomorphially from Tr to aneighborhood of �r. By Lemma 4.3, (taking say 
+ = f� 2 S : j�1j > rg),RTr �jH(�; z)!(�) is a CR funtion on SnTr, j = 1,2. It follows that if 0 < a < b < 1and 
 = f� 2 S : a < j�1j < bg;then Z�
 �jH(�; z) !(�) = ZTb �jH(�; z) !(�)� ZTa �jH(�; z) !(�)de�nes a CR funtion on S n (Ta [ Tb), j = 1; 2.Example 4.6. Let  be a simple losed urve ontained in the open unit diskof the omplex plane, and let D be the region bounded by . Put
+ = f� 2 S : �1 2 Dg:We will show that for any � 2 C(), F (z) 2 CR(S n �
+), whereF (z) = Z�
+ �(�1)H(�; z)!(�):For � 2 C() and � 2 �
+, de�ne ~�(�1; �2) = �(�1). If � is the three-manifold� = f(�1; �2) : �1 2 ; j�2j <p1� j�1j2gthen �� = �
+. If g 2 C() extends to be holomorphi in some neighborhood of, then ~g extends to be holomorphi in a neighborhood of �, and so by Lemma 4.3Fg(z) = Z�
+ ~g(�)H(�; z) !(�)



APPROXIMATION BY CR FUNCTIONS ON THE UNIT SPHERE IN C2 9de�nes a CR funtion on Sn�
+. But the funtions holomorphi in a neighborhoodof , restrited to , are dense in C(), and so given any � 2 C() we may hoosea sequene fgng of funtions, eah holomorphi in some neighborhood of , so that~gn ! ~� uniformly on �
+. Then Fgn ! F uniformly on ompat subsets of Sn�
+and so F 2 CR(S n �
+).Note that by Lemma 4.1, eah of the three preeding examples yields an ap-proximation result for ompat subsets of the respetive domains 
+.5. Certain two-spheres in SFor any a; 0 < a < 1, set �a =p1� jaj2 and letSa = f(�1; �2) 2 S : Im(�2) = a. Note that Sa is a two-sphere in the hyperplane fIm(�2) = ag de�ned by j�1j2 +Re(�2)2 = �2a. Fix a0; 0 < a0 < 1, and �x t with 0 < t < �a0 . Heneforthwe assume without omment that the parameter a is suÆiently lose to a0 sothat also t < �a. Then 4a = f� 2 Sa : jRe(�2)j � tg is a nonempty subset ofSa, onsisting of two disjoint sets eah di�eomorphi to a losed disk, that areneighborhoods of (0;��a + ia) in Sa. Set Ma = Sa n 4a. Our goal in this setionis to use the formula of Theorem 3.1 to establish the following result, whih analso be obtained by using results on approximation on totally real manifolds (see[7℄, [8℄, or [9℄).Theorem 5.1. If K is any ompat subset of Ma0 ; A(K) = C(K).Proof. To begin, we may parameterize Ma by(5.1) �1 =p�2a � x2 ei�; �2 = x+ ia; 0 � � � 2�; jxj < t:De�ne Ga(z) = ZMa �1H(�; z)!(�); z 2 S nMa:We may use properties (i) and (iii) of the Henkin kernel from setion 1 to omputeX(Ga), obtaining(5.2) Fa(z) � X(Ga)(z) = ZMa �1!(�)(1� h�; zi)2 ; z 2 S nMa:Note that Fa is in fat de�ned for all z 2 B [ S nMa, sine for suh z, hz; �i 6= 1for � 2Ma, and Fa is anti-holomorphi in B .Lemma 5.2.Fa(z) = 2�i Z t�t(x2 � �2a) dx(1� (x+ ia)z2)2 ; z 2 S nMa:Proof. Using the parametrization (5.1) we have! = ip�2a � x2 ei� d� ^ dxand so(5.3) Fa(z) = Z t�t (�2a � x2)�Z 2�0 id�(A�Bei�)2� dx;



10 JOHN T. ANDERSON AND JOHN WERMERwhere A = 1� (x + ia)z2 and B = p�2a � x2 z1: If jzj < 1=2, then jBj < 1=2 andjAj > 1=2, and thus A � B� 6= 0 for j� j � 1. The inner integral in (5.3) an beomputed by the residue theorem:Z 2�0 id�(A�Bei�)2 = Z�=1 d�� 1(A�B�)2 = 2�iA2 :Thus(5.4) Fa(z) = 2�i Z t�t(x2 � �2a) dx(1� (x+ ia)z2)2for jzj < 1=2. Sine both Fa(z) and the right-hand side of (5.4) are real-analyti inB , the equality of (5.4) in fat holds for z 2 B . Moreover, sine jx+iaj2 = x2+a2 �t2+ a2 < �2a + a2 = 1, both sides of (5.4) are ontinuous on B nMa. It follows thatthe equality of (5.4) obtains for z 2 B nMa.De�neIa(z) = �2�iz1 Z t�t (x2 � �2a)(x + ia)(1� (x+ ia)z2) dx; z 2 S nMa; z1 6= 0:Then Ia is smooth on S nMa (note jx+ iaj � a > 0), and a alulation givesX(Ia) = Fa(z); z 2 S nMaand therefore X(Ia) = X(Ga) on S nMa. This yields:Lemma 5.3. ZMa �1H(�; z)!(�) = Ia +  a; z 2 S nMawhere  a 2 CR(S nMa).Now onsider the domain 
�, de�ned by
� = f� 2 S : a0 � � < Im(�2) < a0 + �; jRe(�2)j < tgwhere � is hosen small enough so that t < �a for all a 2 [a0 � �; a0 + �℄. Note�
� =Ma0�� [Ma0+� [ Y �t [ Y ��twith appropriate orientations, whereY ��t = f� 2 S : Re(�2) = �t; a0 � � < Im(�2) < a0 + �g;and so by Lemma 5.3,Z�
� �1H(�; z)!(�) = h�(z) + [Ia0+�(z)� Ia0��(z)℄+ ZY �t �1H(�; z)!(�)� ZY ��t �1H(�; z)!(�)for z 2 
�, where h� �  a0�� �  a0+� 2 CR(
�). It is easy to hek for z 2 Ma0that Ia(z) is a ontinuous funtion of a at a0, so thatlim�!0+ Ia0+�(z)� Ia0��(z) = 0; z 2Ma0 ;



APPROXIMATION BY CR FUNCTIONS ON THE UNIT SPHERE IN C2 11and in fat the limit is uniform on Ma0 . Moreover, restriting z to a ompatsubset K of Ma0 , the funtion � 7! �1H(�; z) is bounded on Y ��t. Sine the two-dimensional Hausdor� measure of Yt approahes zero as � ! 0, and sine ! isabsolutely ontinuous with respet to Hausdor� measure, we see thatlim�!0+ ZY ��t �1H(�; z)!(�) = 0uniformly for z 2 K. Combining these observations, we havelim�!0+ Z�
� �1H(�; z)!(�)� h�(z) = 0uniformly on ompat subsets ofMa0 . By Corollary 3.2, sine h� 2 CR(
�), �(�) =�1 2 CR(K). Sine �2 6= 0 on K, we onlude that (see the remarks at the end ofsetion 3) A(K) = C(K), and the proof of Theorem 5.1 is omplete.6. Certain graphs in SIn this setion we establish approximation on ertain graphs in S, using thegeneral method of setion 5. Let D be a smoothly bounded plane domain withompat losure in the open disk D , and suppose f 2 C1(D) satis�es jf(�)j =p1� j�j2, so that the graph �f = f(�; f(�)) : � 2 Dg lies in S. As in setion 5, wewill study the integral Z�
� �(�)H(�; z)!(�)on a sequene of domains 
� for whih 
� # �f as � # 0. We begin with a represen-tation for an integral of this type over �f .Lemma 6.1. With f;D;�f as above, and � 2 C1(�f ), setG(z) = Z�f �(�)H(�; z)!(�)for z 2 S n �f . Then (di�erentiation is in the z variable)z2XG(z) = � Z�D ~�(�1) d�11� �1z1 � f(�1)z2 + ZD � ~���1 d�1 ^ d�11� �1z1 � f(�1)z2 ;where ~�(�1) = �(�1; f(�1)).Proof. Use properties (i) and (iii) of the Henkin kernel to writez2XG(z) = z2 Z�f �(�)(1 � h�; zi)�2!(�)= z2 ZD ~�(�1) d�1 ^ (�f=��1)d�1(1� �1z1 � f(�1)z2)2= ZD ~�(�1) ���1 � 11� �1z1 � f(�1)z2� d�1 ^ d�1



12 JOHN T. ANDERSON AND JOHN WERMERRewrite the latter integral and use Stokes' Theorem to obtainz2XG(z) = � ZD d ~�(�1)d�11� �1z1 � f(�1)z2!+ ZD � ~���1 � d�1 ^ d�11� �1z1 � f(�1)z2= � Z�D ~�(�1)d�11� �1z1 � f(�1)z2 + ZD � ~���1 � d�1 ^ d�11� �1z1 � f(�1)z2 :We now restrit our attention to graphs of the following form. Fix r0; r1 with0 < r0 < r1 < 1 and let D be the annulus f� 2 C : r0 < j�j < r1g. For � 2 D set(6.1) f(�) =p1� j�j2 B( �j�j )where B is a (�xed) �nite Blashke produt:B(�) = nYj=1 �� �j1� ��j�with j�j j < 1; j = 1; : : : ; n. Denote by �f the graph f(�; f(�)) : � 2 Dg; note thatsine jB(�)j = 1 when j� j = 1, �f � S.Theorem 6.2. Assume f has the form (6.1). Then for any ompat subset Kof �f ; A(K) = C(K).Proof. For t 2 R set ft(�) = f(�)eit. We onsider �rst the integralGt = Z�ft �1H(�; z) !(�)Lemma 6.3. For z 2 S n �ft ,z2XGt(z) = 2�i� r201� bt(r0)z2 � r211� bt(r1)z2 + 2 Z r1r0 rdr1� bt(r)z2�where bt(r) =p1� r2 � eitB(0):Proof. Aording to Lemma 6.1,(6.2) z2XGt(z) = � Z�D �1 d�11� �1z1 � ft(�1)z2 + ZD d�1 ^ d�11� �1z1 � ft(�1)z2 :Write the �rst integral on the right-hand side of (6.2) as Ir1(z)� Ir0(z), whereIr(z) = i Z 2�0 r2 d�1� rei�z1 �p1� r2B(ei�)eitz2= Zj� j=1 r2 d��(1� r�z1 �p1� r2B(�)eitz2) :It is easy to hek that (1 � r�z1 �p1� r2B(�)z2)�1 is holomorphi for j� j � 1and ontinuous for j� j � 1 for �xed z 2 S n �ft . Cauhy's integral formula thengives(6.3) Ir(z) = 2�ir21�p1� r2B(0)eitz2 = 2�ir21� bt(r)z2 :



APPROXIMATION BY CR FUNCTIONS ON THE UNIT SPHERE IN C2 13The seond integral on the right-hand side of (6.2) an be evaluated as follows:write �1 = rei� , thenZD d�1 ^ d�11� �1z1 � ft(�1)z2 = 2 Z r1r0 �Z 2�0 id�1� rei�z1 �p1� r2B(ei�)eitz2� r dr= 2 Z r1r0  Zj� j=1 d��(1� r�z1 �p1� r2B(�)eitz2! r dr:It is easy to hek that the funtion (1� r�z1�p1� r2B(�)eitz2) is nonvanishingfor j� j � 1, if z 2 B and so the Cauhy integral formula givesZD d�1 ^ d�11� �1z1 � ft(�1)z2 = 2 Z r1r0 2�i1�p1� r2B(0)eitz2 r dr = 4�i Z r1r0 r dr1� bt(r)z2 :Again by ontinuity this result holds also for z 2 S n�ft . Combining (6.2), (6.3)andthe last displayed equation gives the formula of Lemma 6.3.We next proeed to onstrut a ertain funtion Mt suh that XMt = XGt onS n �t. By Lemma 6.3,12�iXGt(z) = 1z2 r201� bt(r0)z2 � 1z2 r211� bt(r1)z2 + 2 Z r1r0 r drz2(1� bt(r)z2)= r20 � 1z2 + bt(r0)1� bt(r0)z2�� r21 � 1z2 + bt(r1)1� bt(r1)z2��2 Z r1r0 � 1z2 + bt(r)1� bt(r)z2� r dr:and so 12�iXGt(z) = r20bt(r0)1� bt(r0)z2 � r21bt(r1)1� bt(r1)z2 + 2 Z r1r0 bt(r)1� bt(r)z2 r dr:Note that X � 1z1 log(1� bt(r)z2)� = bt(r)1� bt(r)z2 ;and so if we setMt(z) = 2�iz1 �r20 log(1� bt(r0)z2)� r21 log(1� bt(r1)z2) + 2 Z r1r0 log(1� bt(r)z2) rdr�we have(6.4) XMt = XGton S n �ft .Given a ompat subset K of �f , for �xed � > 0 we de�ne a neighborhood 
�of K in S by 
� = f(�1; �2) : �1 2 D; �2 = f(�1)eit; jtj < �g:Note that f
�g�>0 forms a dereasing family of domains with intersetion �f , andthat �
� = �f� [ �f�� [ B�where B� = f(�; f(�)eit) : � 2 �D; jtj < �g:



14 JOHN T. ANDERSON AND JOHN WERMERSet F�(z) = Z�
� �1H(�; z)!(�):Then for z 2 
�,F�(z) = Z�f� �1H(�; z)!(�)� Z�f�� �1H(�; z)!(�) + ZB� �1H(�; z)!(�)= G�(z)�G��(z) + ZB� �1H(�; z)!(�)= M�(z)�M��(z) + h�(z) + ZB� �1H(�; z)!(�);where h� = G� �M� � (G�� �M��) 2 CR(
�), by (6.4), and so(6.5) F�(z)� h�(z) =M�(z)�M��(z) + ZB� �1H(�; z)!(�):Sine the two-dimensional measure of B� tends to zero with epsilon it follows that(f. the end of setion 5) lim�!0+ ZB� �1H(�; z)!(�) = 0uniformly on K. Moreover, an examination of the de�nition of Mt shows thatlim�!0+ M� �M�� = 0 uniformly on K. It follows by (6.5) thatlim�!0+ kF� � h�kK = 0:By Corollary 3.2, �(�) = �1 2 CR(K). Sine �2 6= 0 on K, we onlude that (seethe remarks at the end of setion 3) A(K) = C(K), and the proof of Theorem 6.2is omplete. Referenes[1℄ J. T. Anderson and J. Wermer, A Cauhy-Green Formula on the Unit Sphere in C 2 , Pro-eedings of the Fourth Conferene on Funtion Spaes, K. Jarosz, ed., A.M.S. ContemporaryMathematis Series 328, 2003, pp. 21{30.[2℄ R. Basener, On Rationally Convex Hulls, Trans. Amer. Math. So. 182 (1973), pp. 353-381.[3℄ S. Bell, \The Cauhy Transform, Potential Theory and Conformal Mapping," CRC Press,1992.[4℄ S.{C. Chen and M.{C. Shaw, \Partial Di�erential Equations in Several Complex Variables,"Amerian Mathematial Soiety, 2001.[5℄ T. Gamelin and D. Khavinson, The Isoperimetri Inequality and Rational Approximation,Amer. Math. Monthly, 96 (1989), no. 1, pp. 18{30.[6℄ G. M. Henkin, The Lewy Equation and Analysis on Pseudoonvex Manifolds, Russian Math.Surveys, 32:3 (1977); Uspehi Mat. Nauk 32:3 (1977), pp. 57{118.[7℄ L. H�ormander and J. Wermer, Uniform Approximation on Compat Subsets in Cn, Math.Sand 23 (1968), pp. 5-21.[8℄ L. Nirenberg and R. O. Wells, Holomorphi Approximation on Real Submanifolds of a Com-plex Manifold, Bull. A.M.S. 73 (1967), pp. 378-381.[9℄ A. J. O'Farrell, K.J. Preskenis, and D. Walsh, Holomorphi Approximation in LipshitzNorms, in Proeedings of the Conferene on Banah Algebras and Several Complex Vari-ables, Contemporary Math. v. 32, Amerian Mathematial Soiety, 1983.
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