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Approximation by CR Fun
tions on the Unit Sphere in C 2John T. Anderson and John WermerDedi
ated to Joe Cima on the o

asion of his seventieth birthdayAbstra
t. For a smoothly bounded relatively open subset 
 of the unitsphere in C 2 we derive, using a kernel H(�; z) introdu
ed by G. Henkin, ananalogue of the Cau
hy-Green formula in the plane:�(z) = A(z) + 14�2 Z
 ��(�)H(�; z)!(�)� 14�2 Z�
 �(�)H(�; z)!(�); z 2 
valid for � 2 C1(
), where A is a CR fun
tion on 
 and !(�) = d�1 ^ d�2:We employ this formula to study rational approximation on 
ompa
t subsetsK of S, by using it to estimate the distan
e in C(K) of � to the CR fun
tionson a neighborhood 
 of K. This requires an examination of the integralover �
 appearing in the above formula, whi
h we denote by F
(z); in some
ir
umstan
es we 
an show that F
 also de�nes a CR fun
tion on 
, andthereby estimate the distan
e of � to the CR fun
tions on 
 in terms of X(�),where X is the tangential Cau
hy-Riemann operator on S. For 
ertain K we
an show that R(K) = C(K) by showing that the distan
e of zj to the CRfun
tions on 
 tends to zero as 
 shrinks to K.1. Introdu
tionLet D be a smoothly bounded domain in the 
omplex plane and let f be afun
tion in C1(D). The Cau
hy-Green formula for D allows us to represent thevalue of f at a point z 2 D in terms of the values of f on �D and of the one-form�f on D:(1.1) f(z) = 12�i Z�D f(�)� � z d� � 12�i ZD �f(�) ^ d�� � z :We note the following 
onsequen
es of (1.1). Let � be a �nite 
omplex measure onC , of 
ompa
t support. The Cau
hy transform �̂ of � is de�ned by�̂(�) = Z d�(z)z � � ; z 2 C :Given a fun
tion f 2 C10 (C ), we then have(1.2) ZC fd� = 12�i ZC �̂(�)�f(�) ^ d�:2000 Mathemati
s Subje
t Classi�
ation. Primary 32A25, Se
ondary 32E30.
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2 JOHN T. ANDERSON AND JOHN WERMEREquation (1.2) follows from (1.1) by letting D be a large disk, multiplying by � andintegrating over C .Given a 
ompa
t set K � C , C(K) is the Bana
h algebra of 
ontinuous fun
-tions on K with norm kfkK = maxfjf(z)j : z 2 Kg. For a smoothly bounded planedomain D, let A(D) denote the spa
e of fun
tions g 2 C(D) with g holomorphi
on D. For f 2 C1(�D), setF (z) = 12�i Z�D f(�)� � z d�; z 2 D:Then F extends to D (see [3℄) with F 2 C1(D), and in parti
ular F 2 A(D). Theformula (1.1) gives, for z 2 D,(1.3) jf(z)� F (z)j = ���� 12�i ZD �f�� (�) d� ^ d�� � z ���� � 1� maxD �����f�� ���� � �ZD dm2(�)j� � zj � ;where m2(�) is two-dimensional Lebesgue measure. An inequality of Mergelyan(see [5℄) states that(1.4) ZD dm2(�)j� � zj � 2p� �pm2(D):It follows by 
ontinuity of f and F on D that(1.5) dist(f;A(D)) � inffkf �	kD :  2 A(D)g � 2p� �maxD �����f�� ����pm2(D):For a 
ompa
t setK � C , let R(K) be the 
losure in C(K) of rational fun
tionsholomorphi
 in a neighborhood of K. As a 
orollary of (1.5) we obtain the following
lassi
al result.Theorem 1.1 (The Hartogs-Rosenthal Theorem). Let K be a 
ompa
t set inC with m2(K) = 0. Then R(K) = C(K).Proof. Fix f 2 C1(C ). Choose a sequen
e of open, smoothly bounded setsfDng de
reasing to K. Fix � > 0. By (1.5), for ea
h n there exists Fn 2 A(Dn)with kf � FnkDn < 2p� �maxDn �����f�� ����pm2(Dn) + �:By Runge's Theorem, there exists rn 2 R(K) su
h that kFn� rnkK < �. It followsthat kf � rnkK < 2p� �maxD1 �����f�� ����pm2(Dn) + 2�:Sin
e m2(Dn) ! m2(K) = 0 as n ! 1, we get kf � rnkK < 3� for n suÆ
ientlylarge. As � was arbitrary, f jK 2 R(K). Restri
tions of fun
tions in C1(C ) to Kare dense in C(K), so R(K) = C(K).Our goal in this paper is to study the above situation when the 
omplex planeis repla
ed by the unit sphere S in C 2 , and analyti
 fun
tions on a domain in C arerepla
ed by CR fun
tions on a domain on S. Our work uses the kernel introdu
edby G. Henkin in [6℄. Related integral formulas are given by Chen and Shaw in [4℄.In se
tion 2 we des
ribe Henkin's kernel and the analogues of formulas (1.1) and(1.2) on the sphere S. In se
tion 3 we give a Cau
hy-Green formula for a smoothlybounded domain on S. The remainder of the paper is devoted to a study of theintegrals appearing in this formula and appli
ations to approximation results.



APPROXIMATION BY CR FUNCTIONS ON THE UNIT SPHERE IN C2 32. Henkin's kernel for SWe denote by B the open unit ball in C 2 , and let S = �B be the unit sphere.Points in C 2 will normally be written as z = (z1; z2) or � = (�1; �2), and theHermitian inner produ
t as h�; zi � �1z1 + �2z2. The standard invariant three-dimensional measure on S is written � (note: � is not normalized). We will alsofrequently make use of the 2-form !(�) � d�1 ^ d�2. We denote by A(B ) the ballalgebra 
onsisting of all fun
tions 
ontinuous on the 
losure of B and holomorphi
on B . If 
 is an open subset of S, we say g 2 C1(
) is a smooth CR fun
tionon 
, if Xg = 0 on 
, where X is the tangential Cau
hy-Riemann operator on S.Expressed in the 
oordinates of C 2 ,X = z2 ��z1 � z1 ��z2 :Any fun
tion holomorphi
 in a neighborhood of 
 in C 2 is a smooth CR fun
tionon 
. Using the fa
t that for smooth �(2.1) �� ^ ! = 2(X�) d�as measures on S, we see using Stokes' theorem that g is a smooth CR fun
tion on
 if and only if(2.2) Z
 �� � g ^ ! = 0for every � 2 C1(C 2 ) whose support meets S in a 
ompa
t subset of 
. We saythat g 2 C(
) is a 
ontinuous CR fun
tion on 
, and write g 2 CR(
), if (2.2)holds for all su
h �. It follows easily from (2.2) that CR(
) is 
losed under uniform
onvergen
e on 
ompa
t subsets of 
. Sin
e every g 2 A(B ) is a uniform limit ofpolynomials on S, it follows that g 2 CR(S) if g is in the ball algebra and thatg 2 A(B ) is a smooth CR fun
tion on 
 whenever g ��
 2 C1(
) . For a 
ompa
tK � S, let CR(K) be the uniform 
losure in C(K) of fun
tions that are CR insome relatively open neighborhood of K in S.As a repla
ement for the Cau
hy kernel (� � z)�1 Henkin gave the kernelH(�; z) = �1z2 � �2z1j1� hz; �ij2 ; �; z 2 S:On S�S;H is real-analyti
 o� the diagonal f� = zg, where hz; �i = 1. We 
onsideras an analogue of the Cau
hy transform �̂ of a measure � the transformK�(�) = ZS H(�; z) d�(z); � 2 S;for a measure � on S. The integral de�ning K� 
onverges absolutely a.e-d� on S,and K� 2 L1(S; �). Under the assumption that � is a measure on S orthogonalto the restri
tion to S of every holomorphi
 polynomial on C 2 , Henkin proves(2.3) ZS � d� = 14�2 ZS �� ^K� � !; � 2 C1(S):The orthogonality assumption on � is ne
essary sin
e the right-hand side of (2.3)vanishes if � is the restri
tion to S of a polynomial.We re
ord below some useful properties of H and K�:



4 JOHN T. ANDERSON AND JOHN WERMER(i) H(�; z) = �H(z; �);(ii) If U is a unitary transformation of C 2 with det(U) = 1, H(U�; Uz) = H(�; z);(iii) X [H(�; z)℄ = �(1� hz; �i)�2 (di�erentiation is in the � variable);(iv) K� 2 CR(S n supp(�)).Properties (i) - (iii) are routine 
omputations, while (iv) follows immediatelyfrom (2.3) and the de�nition (2.2) by taking by taking � supported on an open setdisjoint from supp(�).As an analogue of the Cau
hy-Green formula (1.1), we have the following rep-resentation on S: given � 2 C1(S), there exists a fun
tion � 2 A(B ) su
h that(2.4) �(z) = �(z) + 14�2 ZS ��(�) ^H(�; z) !(�); z 2 S:This formula, whi
h we 
all the Cau
hy-Green formula on S follows dire
tly from(2.3) as follows: set K(z) = ZS ��(�) ^H(�; z) !(�):Choose a measure � on S with � orthogonal to polynomials. ThenZSK(z) d�(z) = ZS �ZS H(�; z) d�(z)���(�) ^ !(�) = ZS ��(�) ^K�(�) !(�):By (2.3), ZS(4�2��K) d� = 0:Sin
e this holds for every � orthogonal to polynomials, the Hahn-Bana
h Theoremimplies that 4�2��K belongs to the uniform 
losure of polynomials on S, and sois the restri
tion to S of a fun
tion in A(B ), giving (2.4). Other proofs of (2.4) aregiven in [4℄ and [1℄.3. The Cau
hy-Green formula for a domain on SLet 
+ be a smoothly bounded domain on S, and �x a fun
tion � 2 C1(
+).We wish to generalize formula (2.4) to this situation. Let 
� denote the 
omplementof 
+ on S. Note that �
� = ��
+ as oriented manifolds.Theorem 3.1. For z 2 
+ we have�(z) = A(z) + 14�2 Z
+ ��(�) ^H(�; z) !(�)� 14�2 Z�
+ �(�)H(�; z) !(�);where A 2 CR(
+).Proof. We form a smooth extension ~� of � to S. By (2.4) there exists~� 2 A(B ) su
h that for z 2 S,~�(z) = ~�(z) + 14�2 ZS � ~�(�) ^H(�; z) � !(�)and so(3.1) ~�(z) = ~�(z)+ 14�2 Z
+ ��(�)^H(�; z) !(�)+ 14�2 Z
� � ~�(�)^H(�; z) !(�):



APPROXIMATION BY CR FUNCTIONS ON THE UNIT SPHERE IN C2 5We rewrite the last term of this equation as follows: for z 2 
+ �xed, the fun
tion� 7! H(�; z) is smooth on 
�, and so we may use Stokes' theorem to writeZ�
� ~�(�)H(�; z) !(�) = Z
� d[ ~�(�)H(�; z) !(�)℄= Z
� �[ ~�(�)H(�; z) !(�)℄= Z
� � ~�(�) ^H(�; z) !(�) + Z
� ~�(�) �H(�; z) ^ !(�):Using (2.1) and property (iii) of the Henkin kernel the se
ond integral on theright-hand side of the last equation 
an be expressed as�2 Z
� ~�(�) d�(�)(1� hz; �i)2 :Therefore,(3.2) Z
� � ~�(�) ^H(�; z) !(�) = Z�
� ~�(�)H(�; z)!(�) + 2 Z
� ~�(�) d�(�)(1� hz; �i)2 ;and so we may rewrite (3.1) as(3.3) ~�(z) = A(z) + 14�2 Z
+ ��(�) ^H(�; z)!(�)� 14�2 Z�
+ �(�)H(�; z)!(�)for z 2 
+, where(3.4) A(z) = ~�(z) + 12�2 Z
� ~�(�) d�(�)(1� hz; �i)2 :As noted above, sin
e ~�(z) 2 A(B ), ~� 2 CR(S), while the se
ond term on theright-hand side of (3.4) is holomorphi
 in a neighborhood of 
+ in C 2 , and hen
ebelongs to CR(
+). This 
ompletes the proof.We refer to the formula appearing in Theorem 3.1 as the Cau
hy-Green formulafor 
+. Our goal in the remainder of this paper is to suggest how the formula ofTheorem 3.1 
an be used to derive approximation results for 
ertain 
ompa
t setsK � S, in mu
h the same way that we employed the 
lassi
al Cau
hy-Green formulato derive the approximation results in se
tion 1. We �rst note a simple 
orollary ofTheorem 3.1; 
f. the proof of the Hartogs-Rosenthal theorem in se
tion 1.Corollary 3.2. Let K be a 
ompa
t subset of S, and suppose for ea
h � > 0,
� is a smoothly bounded domain in S 
ontaining K, with lim�!0+ �(
�) = 0. For� 2 C1(S) set F�(z) = 14�2 Z�
� �(�)H(�; z) !(�); z 2 
�:If for ea
h � > 0 there is a fun
tion h� 2 CR(
�) so that lim�!0+ kF� � h�kK = 0,then �jK 2 CR(K).Proof. Apply the formula of Theorem 3.1 to the domain 
� to obtain forz 2 
�,(3.5) �(z) = A(z)� h�(z)� (F�(z)� h�(z)) + 14�2 Z
� ��(�) ^H(�; z) !(�)



6 JOHN T. ANDERSON AND JOHN WERMERwhere A�h� 2 CR(
�). By hypothesis, kF��h�kK tends to zero as �! 0+, whilethe uniform integrability of H in z implies that the last term on the right of (3.5)tends to zero uniformly in z as �! 0+ (see the proof of Lemma 4.1 below), and solim�!0+ k�� (A+ h�)kK = 0;implying � 2 CR(K).As Corollary 3.2 shows, the study of approximation by CR fun
tions on 
ompa
tsubsets of S 
an be redu
ed to the study of CR approximation of integrals of theform F
;�(z) = Z�
 �(�)H(�; z) !(�):for smoothly bounded neighborhoods 
 of K. The remainder of this paper isdevoted to an examination of su
h integrals. In se
tion 4 we show that for 
ertain
 and �, F
;� 2 CR(
). In this 
ase the formula of Theorem 3.1 immediatelyyields an estimate similar to (1.5). However, in general one 
annot expe
t that Fwill be a CR fun
tion on 
. In se
tions 5 and 6 we establish approximation resultson 
ertain 
ompa
t subsets K of S with �(K) = 0 by approximating F
� ;� by CRfun
tions on a sequen
e of domains 
� shrinking to K, and applying Corollary 3.2.Be
ause the Cau
hy-Green formula for domains on S lends itself to the studyof approximation by CR fun
tions, it is worthwhile to 
omment on the relationshipbetween the spa
e CR(K) and the spa
es A(K); R(K) (
onsisting of uniform limitsonK of fun
tions holomorphi
 in neighborhood ofK, and rational and holomorphi
in a neighborhood of K, respe
tively.) Sin
e any fun
tion holomorphi
 in a neigh-borhood U of K in C 2 is a CR fun
tion on U \ S, it follows that A(K) � CR(K).On the other hand, if  2 CR(
) for some open neighborhood of K in S, it iswell-known that there exists an open subset U of B 
ontaining 
 in its 
losure, anda fun
tion ~ holomorphi
 in U and 
ontinuous on U with ~ =  on 
. There existst < 1 so that tz 2 U for all z 2 K, and so the fun
tion z 7! ~ (tz) is holomorphi
in a neighborhood of K in C 2 . As t ! 1�, the fun
tions ~ (tz) approa
h  uni-formly on K. It follows that CR(K) � A(K), and hen
e CR(K) = A(K). By theStone-Weierstrass Theorem, A(K) = C(K) if and only if the 
onjugate 
oordinatefun
tions fz1; z2g belong to A(K); if (say) z2 6= 0 on K � S, then the relationz2 = (1� z1z1)=z2 shows that A(K) = C(K) if and only if z1 2 A(K).Re
all that a 
ompa
t subsetK of C n is said to be rationally 
onvex if given anypoint z 2 C n nK, there is a polynomial P with P (z) = 0 but P 6= 0 on K. Rational
onvexity is a ne
essary, but far from suÆ
ient, 
ondition for R(K) = C(K) whenn > 1. Ri
hard Basener [2℄ 
onstru
ted rationally 
onvex subsets K of S for whi
hR(K) 6= C(K). Basener's sets have positive �-measure. We have been motivatedby the following analogue of the Hartogs-Rosenthal Theorem, for whi
h we have noproof or 
ounterexample.Conje
ture 3.3. Let K be a rationally 
onvex subset of S with �(K) = 0.Then R(K) = C(K).If K is rationally 
onvex, then it 
an be shown that A(K) = R(K), so that bythe above remarks, rational approximation onK is equivalent to CR approximation.



APPROXIMATION BY CR FUNCTIONS ON THE UNIT SPHERE IN C2 74. A spe
ial 
aseLemma 4.1. Given a domain 
+ � S, and � 2 C1(
+), suppose thatF (z) = Z�
+ �(�)H(�; z) !(�)de�nes a CR fun
tion on 
+. Then for any 
ompa
t subset K of 
+,(4.1) dist(�;CR(K))) � inffk��	kK : 	 2 CR(K)g � C
+ � kX(�)k
+for a positive 
onstant C
+ independent of � and K with the property that for every� > 0, there exists Æ > 0 so that �(
+) < Æ =) C
+ < �.Proof. By Theorem 3.1,(4.2) �(z) = A(z) + 14�2 Z
+ ��(�) ^H(�; z)!(�)� 14�2 Z�
+ �(�)H(�; z)!(�)with A 2 CR(
+). By hypothesis, the se
ond integral on the right of (4.2) de�nesa fun
tion in CR(S n �
+) and so�(z) = A1(z) + 14�2 Z
+ ��(�) ^H(�; z)!(�)= A1(z) + 12�2 Z
+ X(�)(�)H(�; z)d�(�)with A1 2 CR(
+). Thus for any 
ompa
t K � 
+,dist(�;CR(K)) � 12�2 max
+ jX(�)j Z
+ jH(�; z)j d�(�):Set C
+ = supz2
+(1=2�2) R
+ jH(�; z)j d�(�). By the unitary invarian
e of Hand d�,Z
+ jH(�; z)j d�(�) = ZUz(
+) jH(�; z0)j d�(�) � ZS jH(�; z0)j <1where z0 = (1; 0) and Uz is a unitary transformation with det(Uz) = 1 taking z toz0. Thus C
+ is �nite and (4.1) holds. Moreover, sin
e H(�; z0) 2 L1(d�), given� > 0 there exists Æ > 0 so that whenever Y is a measurable subset of S with�(Y ) < Æ, then RY jH(�; z0)jd�(�) < �. The 
laim regarding C
+ then follows bynoting that for every z, �(
+) = �(Uz
+).Remark 4.2. The 
orresponding estimate for 
 = S (without hypothesis on�) is given in [1℄, Theorem 4.1.Next we identify a spe
ial 
ase in whi
h the integral F appearing in Lemma4.1 
an be shown to be a CR fun
tion on 
+.Lemma 4.3. Let 
+ be a smoothly bounded domain on S and let � 2 C1(
+).Suppose there exists a smooth 3-manifold-with-boundary � in C 2 with �� = �
+,and a fun
tion ~� smooth on � and holomorphi
 in a neighborhood of � n ��, with� = ~� on �
+. Then F (z) = Z�
+ �(�)H(�; z) !(�)belongs to CR(S n �
+).



8 JOHN T. ANDERSON AND JOHN WERMERProof. Let � be the measure �! j�
+ . For any polynomial P , by Stokes'theorem we haveZS Pd� = Z�
+ P� ! = Z� d(P ~� !) = Z� �(P ~� !) = 0by assumption on �. Therefore, K� 2 CR(S n �
+). ButK�(z) = ZS H(�; z) d�(�) = �F (z):By property (iv) of K� above (se
tion 2), K� 2 CR(S n supp(�)) = CR(S n �
+),so F 2 CR(S n �
+).Example 4.4. As a �rst example of the situation 
onsidered in Lemma 4.2,take 
+ = f� 2 S : Im(�2) > 0g; � = fz 2 B : Im(�2) = 0g; �(�) = �2:Then ~�(�) = �2 extends � from �
+ holomorphi
ally to a neighborhood of �, andso F (z) = Z�
+ �2H(�; z) !(�)Example 4.5. For 0 < r < 1, let Tr be the torusf� 2 S : j�1j = rg:The three-manifold �r = f� 2 B : j�1j = rg has boundary Tr. Sin
e for � 2 Tr�1 = r2�1 ; �2 = 1� r2�2 ;while �1; �2 6= 0 near �r, both �1 and �2 extend holomorphi
ally from Tr to aneighborhood of �r. By Lemma 4.3, (taking say 
+ = f� 2 S : j�1j > rg),RTr �jH(�; z)!(�) is a CR fun
tion on SnTr, j = 1,2. It follows that if 0 < a < b < 1and 
 = f� 2 S : a < j�1j < bg;then Z�
 �jH(�; z) !(�) = ZTb �jH(�; z) !(�)� ZTa �jH(�; z) !(�)de�nes a CR fun
tion on S n (Ta [ Tb), j = 1; 2.Example 4.6. Let 
 be a simple 
losed 
urve 
ontained in the open unit diskof the 
omplex plane, and let D be the region bounded by 
. Put
+ = f� 2 S : �1 2 Dg:We will show that for any � 2 C(
), F (z) 2 CR(S n �
+), whereF (z) = Z�
+ �(�1)H(�; z)!(�):For � 2 C(
) and � 2 �
+, de�ne ~�(�1; �2) = �(�1). If � is the three-manifold� = f(�1; �2) : �1 2 
; j�2j <p1� j�1j2gthen �� = �
+. If g 2 C(
) extends to be holomorphi
 in some neighborhood of
, then ~g extends to be holomorphi
 in a neighborhood of �, and so by Lemma 4.3Fg(z) = Z�
+ ~g(�)H(�; z) !(�)



APPROXIMATION BY CR FUNCTIONS ON THE UNIT SPHERE IN C2 9de�nes a CR fun
tion on Sn�
+. But the fun
tions holomorphi
 in a neighborhoodof 
, restri
ted to 
, are dense in C(
), and so given any � 2 C(
) we may 
hoosea sequen
e fgng of fun
tions, ea
h holomorphi
 in some neighborhood of 
, so that~gn ! ~� uniformly on �
+. Then Fgn ! F uniformly on 
ompa
t subsets of Sn�
+and so F 2 CR(S n �
+).Note that by Lemma 4.1, ea
h of the three pre
eding examples yields an ap-proximation result for 
ompa
t subsets of the respe
tive domains 
+.5. Certain two-spheres in SFor any a; 0 < a < 1, set �a =p1� jaj2 and letSa = f(�1; �2) 2 S : Im(�2) = a. Note that Sa is a two-sphere in the hyperplane fIm(�2) = ag de�ned by j�1j2 +Re(�2)2 = �2a. Fix a0; 0 < a0 < 1, and �x t with 0 < t < �a0 . Hen
eforthwe assume without 
omment that the parameter a is suÆ
iently 
lose to a0 sothat also t < �a. Then 4a = f� 2 Sa : jRe(�2)j � tg is a nonempty subset ofSa, 
onsisting of two disjoint sets ea
h di�eomorphi
 to a 
losed disk, that areneighborhoods of (0;��a + ia) in Sa. Set Ma = Sa n 4a. Our goal in this se
tionis to use the formula of Theorem 3.1 to establish the following result, whi
h 
analso be obtained by using results on approximation on totally real manifolds (see[7℄, [8℄, or [9℄).Theorem 5.1. If K is any 
ompa
t subset of Ma0 ; A(K) = C(K).Proof. To begin, we may parameterize Ma by(5.1) �1 =p�2a � x2 ei�; �2 = x+ ia; 0 � � � 2�; jxj < t:De�ne Ga(z) = ZMa �1H(�; z)!(�); z 2 S nMa:We may use properties (i) and (iii) of the Henkin kernel from se
tion 1 to 
omputeX(Ga), obtaining(5.2) Fa(z) � X(Ga)(z) = ZMa �1!(�)(1� h�; zi)2 ; z 2 S nMa:Note that Fa is in fa
t de�ned for all z 2 B [ S nMa, sin
e for su
h z, hz; �i 6= 1for � 2Ma, and Fa is anti-holomorphi
 in B .Lemma 5.2.Fa(z) = 2�i Z t�t(x2 � �2a) dx(1� (x+ ia)z2)2 ; z 2 S nMa:Proof. Using the parametrization (5.1) we have! = ip�2a � x2 ei� d� ^ dxand so(5.3) Fa(z) = Z t�t (�2a � x2)�Z 2�0 id�(A�Bei�)2� dx;



10 JOHN T. ANDERSON AND JOHN WERMERwhere A = 1� (x + ia)z2 and B = p�2a � x2 z1: If jzj < 1=2, then jBj < 1=2 andjAj > 1=2, and thus A � B� 6= 0 for j� j � 1. The inner integral in (5.3) 
an be
omputed by the residue theorem:Z 2�0 id�(A�Bei�)2 = Z�=1 d�� 1(A�B�)2 = 2�iA2 :Thus(5.4) Fa(z) = 2�i Z t�t(x2 � �2a) dx(1� (x+ ia)z2)2for jzj < 1=2. Sin
e both Fa(z) and the right-hand side of (5.4) are real-analyti
 inB , the equality of (5.4) in fa
t holds for z 2 B . Moreover, sin
e jx+iaj2 = x2+a2 �t2+ a2 < �2a + a2 = 1, both sides of (5.4) are 
ontinuous on B nMa. It follows thatthe equality of (5.4) obtains for z 2 B nMa.De�neIa(z) = �2�iz1 Z t�t (x2 � �2a)(x + ia)(1� (x+ ia)z2) dx; z 2 S nMa; z1 6= 0:Then Ia is smooth on S nMa (note jx+ iaj � a > 0), and a 
al
ulation givesX(Ia) = Fa(z); z 2 S nMaand therefore X(Ia) = X(Ga) on S nMa. This yields:Lemma 5.3. ZMa �1H(�; z)!(�) = Ia +  a; z 2 S nMawhere  a 2 CR(S nMa).Now 
onsider the domain 
�, de�ned by
� = f� 2 S : a0 � � < Im(�2) < a0 + �; jRe(�2)j < tgwhere � is 
hosen small enough so that t < �a for all a 2 [a0 � �; a0 + �℄. Note�
� =Ma0�� [Ma0+� [ Y �t [ Y ��twith appropriate orientations, whereY ��t = f� 2 S : Re(�2) = �t; a0 � � < Im(�2) < a0 + �g;and so by Lemma 5.3,Z�
� �1H(�; z)!(�) = h�(z) + [Ia0+�(z)� Ia0��(z)℄+ ZY �t �1H(�; z)!(�)� ZY ��t �1H(�; z)!(�)for z 2 
�, where h� �  a0�� �  a0+� 2 CR(
�). It is easy to 
he
k for z 2 Ma0that Ia(z) is a 
ontinuous fun
tion of a at a0, so thatlim�!0+ Ia0+�(z)� Ia0��(z) = 0; z 2Ma0 ;
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t the limit is uniform on Ma0 . Moreover, restri
ting z to a 
ompa
tsubset K of Ma0 , the fun
tion � 7! �1H(�; z) is bounded on Y ��t. Sin
e the two-dimensional Hausdor� measure of Yt approa
hes zero as � ! 0, and sin
e ! isabsolutely 
ontinuous with respe
t to Hausdor� measure, we see thatlim�!0+ ZY ��t �1H(�; z)!(�) = 0uniformly for z 2 K. Combining these observations, we havelim�!0+ Z�
� �1H(�; z)!(�)� h�(z) = 0uniformly on 
ompa
t subsets ofMa0 . By Corollary 3.2, sin
e h� 2 CR(
�), �(�) =�1 2 CR(K). Sin
e �2 6= 0 on K, we 
on
lude that (see the remarks at the end ofse
tion 3) A(K) = C(K), and the proof of Theorem 5.1 is 
omplete.6. Certain graphs in SIn this se
tion we establish approximation on 
ertain graphs in S, using thegeneral method of se
tion 5. Let D be a smoothly bounded plane domain with
ompa
t 
losure in the open disk D , and suppose f 2 C1(D) satis�es jf(�)j =p1� j�j2, so that the graph �f = f(�; f(�)) : � 2 Dg lies in S. As in se
tion 5, wewill study the integral Z�
� �(�)H(�; z)!(�)on a sequen
e of domains 
� for whi
h 
� # �f as � # 0. We begin with a represen-tation for an integral of this type over �f .Lemma 6.1. With f;D;�f as above, and � 2 C1(�f ), setG(z) = Z�f �(�)H(�; z)!(�)for z 2 S n �f . Then (di�erentiation is in the z variable)z2XG(z) = � Z�D ~�(�1) d�11� �1z1 � f(�1)z2 + ZD � ~���1 d�1 ^ d�11� �1z1 � f(�1)z2 ;where ~�(�1) = �(�1; f(�1)).Proof. Use properties (i) and (iii) of the Henkin kernel to writez2XG(z) = z2 Z�f �(�)(1 � h�; zi)�2!(�)= z2 ZD ~�(�1) d�1 ^ (�f=��1)d�1(1� �1z1 � f(�1)z2)2= ZD ~�(�1) ���1 � 11� �1z1 � f(�1)z2� d�1 ^ d�1



12 JOHN T. ANDERSON AND JOHN WERMERRewrite the latter integral and use Stokes' Theorem to obtainz2XG(z) = � ZD d ~�(�1)d�11� �1z1 � f(�1)z2!+ ZD � ~���1 � d�1 ^ d�11� �1z1 � f(�1)z2= � Z�D ~�(�1)d�11� �1z1 � f(�1)z2 + ZD � ~���1 � d�1 ^ d�11� �1z1 � f(�1)z2 :We now restri
t our attention to graphs of the following form. Fix r0; r1 with0 < r0 < r1 < 1 and let D be the annulus f� 2 C : r0 < j�j < r1g. For � 2 D set(6.1) f(�) =p1� j�j2 B( �j�j )where B is a (�xed) �nite Blas
hke produ
t:B(�) = nYj=1 �� �j1� ��j�with j�j j < 1; j = 1; : : : ; n. Denote by �f the graph f(�; f(�)) : � 2 Dg; note thatsin
e jB(�)j = 1 when j� j = 1, �f � S.Theorem 6.2. Assume f has the form (6.1). Then for any 
ompa
t subset Kof �f ; A(K) = C(K).Proof. For t 2 R set ft(�) = f(�)eit. We 
onsider �rst the integralGt = Z�ft �1H(�; z) !(�)Lemma 6.3. For z 2 S n �ft ,z2XGt(z) = 2�i� r201� bt(r0)z2 � r211� bt(r1)z2 + 2 Z r1r0 rdr1� bt(r)z2�where bt(r) =p1� r2 � eitB(0):Proof. A

ording to Lemma 6.1,(6.2) z2XGt(z) = � Z�D �1 d�11� �1z1 � ft(�1)z2 + ZD d�1 ^ d�11� �1z1 � ft(�1)z2 :Write the �rst integral on the right-hand side of (6.2) as Ir1(z)� Ir0(z), whereIr(z) = i Z 2�0 r2 d�1� rei�z1 �p1� r2B(ei�)eitz2= Zj� j=1 r2 d��(1� r�z1 �p1� r2B(�)eitz2) :It is easy to 
he
k that (1 � r�z1 �p1� r2B(�)z2)�1 is holomorphi
 for j� j � 1and 
ontinuous for j� j � 1 for �xed z 2 S n �ft . Cau
hy's integral formula thengives(6.3) Ir(z) = 2�ir21�p1� r2B(0)eitz2 = 2�ir21� bt(r)z2 :
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ond integral on the right-hand side of (6.2) 
an be evaluated as follows:write �1 = rei� , thenZD d�1 ^ d�11� �1z1 � ft(�1)z2 = 2 Z r1r0 �Z 2�0 id�1� rei�z1 �p1� r2B(ei�)eitz2� r dr= 2 Z r1r0  Zj� j=1 d��(1� r�z1 �p1� r2B(�)eitz2! r dr:It is easy to 
he
k that the fun
tion (1� r�z1�p1� r2B(�)eitz2) is nonvanishingfor j� j � 1, if z 2 B and so the Cau
hy integral formula givesZD d�1 ^ d�11� �1z1 � ft(�1)z2 = 2 Z r1r0 2�i1�p1� r2B(0)eitz2 r dr = 4�i Z r1r0 r dr1� bt(r)z2 :Again by 
ontinuity this result holds also for z 2 S n�ft . Combining (6.2), (6.3)andthe last displayed equation gives the formula of Lemma 6.3.We next pro
eed to 
onstru
t a 
ertain fun
tion Mt su
h that XMt = XGt onS n �t. By Lemma 6.3,12�iXGt(z) = 1z2 r201� bt(r0)z2 � 1z2 r211� bt(r1)z2 + 2 Z r1r0 r drz2(1� bt(r)z2)= r20 � 1z2 + bt(r0)1� bt(r0)z2�� r21 � 1z2 + bt(r1)1� bt(r1)z2��2 Z r1r0 � 1z2 + bt(r)1� bt(r)z2� r dr:and so 12�iXGt(z) = r20bt(r0)1� bt(r0)z2 � r21bt(r1)1� bt(r1)z2 + 2 Z r1r0 bt(r)1� bt(r)z2 r dr:Note that X � 1z1 log(1� bt(r)z2)� = bt(r)1� bt(r)z2 ;and so if we setMt(z) = 2�iz1 �r20 log(1� bt(r0)z2)� r21 log(1� bt(r1)z2) + 2 Z r1r0 log(1� bt(r)z2) rdr�we have(6.4) XMt = XGton S n �ft .Given a 
ompa
t subset K of �f , for �xed � > 0 we de�ne a neighborhood 
�of K in S by 
� = f(�1; �2) : �1 2 D; �2 = f(�1)eit; jtj < �g:Note that f
�g�>0 forms a de
reasing family of domains with interse
tion �f , andthat �
� = �f� [ �f�� [ B�where B� = f(�; f(�)eit) : � 2 �D; jtj < �g:



14 JOHN T. ANDERSON AND JOHN WERMERSet F�(z) = Z�
� �1H(�; z)!(�):Then for z 2 
�,F�(z) = Z�f� �1H(�; z)!(�)� Z�f�� �1H(�; z)!(�) + ZB� �1H(�; z)!(�)= G�(z)�G��(z) + ZB� �1H(�; z)!(�)= M�(z)�M��(z) + h�(z) + ZB� �1H(�; z)!(�);where h� = G� �M� � (G�� �M��) 2 CR(
�), by (6.4), and so(6.5) F�(z)� h�(z) =M�(z)�M��(z) + ZB� �1H(�; z)!(�):Sin
e the two-dimensional measure of B� tends to zero with epsilon it follows that(
f. the end of se
tion 5) lim�!0+ ZB� �1H(�; z)!(�) = 0uniformly on K. Moreover, an examination of the de�nition of Mt shows thatlim�!0+ M� �M�� = 0 uniformly on K. It follows by (6.5) thatlim�!0+ kF� � h�kK = 0:By Corollary 3.2, �(�) = �1 2 CR(K). Sin
e �2 6= 0 on K, we 
on
lude that (seethe remarks at the end of se
tion 3) A(K) = C(K), and the proof of Theorem 6.2is 
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