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ABSTRACT. For a smoothly bounded relatively open subset € of the unit
sphere in C? we derive, using a kernel H((,z) introduced by G. Henkin, an
analogue of the Cauchy-Green formula in the plane:

1 [ = 1
#2) = Al2) + — /Q OP(OH (G, 2)w(C) = = e B(QH(C, 2)w((), 2 € 0

valid for ¢ € C1(Q), where A is a CR function on Q and w(¢) = d¢1 A dCa.
We employ this formula to study rational approximation on compact subsets
K of S, by using it to estimate the distance in C(K) of ¢ to the CR functions
on a neighborhood € of K. This requires an examination of the integral
over 92 appearing in the above formula, which we denote by Fq(z); in some
circumstances we can show that Fq also defines a CR function on Q, and
thereby estimate the distance of ¢ to the CR functions on € in terms of X (¢),
where X is the tangential Cauchy-Riemann operator on S. For certain K we
can show that R(K) = C(K) by showing that the distance of z; to the CR
functions on  tends to zero as 2 shrinks to K.

1. Introduction

Let D be a smoothly bounded domain in the complex plane and let f be a
function in C'(D). The Cauchy-Green formula for D allows us to represent the
value of f at a point z € D in terms of the values of f on D and of the one-form
Of on D:

(1) 16 =5 | Hac— o [ 300 222

We note the following consequences of (1.1). Let u be a ﬁnlte complex measure on
C, of compact support. The Cauchy transform ji of p is defined by

ae) = / ) e ¢

z—C’ '
Given a function f € Cj(C), we then have
(12) [ fan= 5 [i0as nac
) C
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Equation (1.2) follows from (1.1) by letting D be a large disk, multiplying by © and
integrating over C.

Given a compact set K C C, C'(K) is the Banach algebra of continuous func-
tions on K with norm || f||x = max{|f(z)| : z € K}. For a smoothly bounded plane
domain D, let A(D) denote the space of functions g € C(D) with g holomorphic
on D. For f € C1(dD), set

_ 1 f(&)
F(Z)_Q_m 3DC_ZdC,

Then F extends to D (see [3]) with F € C'(D), and in particular F € A(D). The
formula (1.1) gives, for z € D,
dC A d¢ dC ‘ [ dm(C)}

1 0

o | =) ——
where m2(({) is two-dimensional Lebesgue measure. An inequality of Mergelyan
(see [5]) states that

(1.4) /C\hgniz\ <2/ - /m

It follows by continuity of f and F on D that
(15)  dist(f, A(D)) = inf{|lf — W55+ ¥ € A(D)} <

For a compact set K C C, let R(K) be the closure i
holomorphic in a neighborhood of K. As a corollary of (1
classical result.

ax

ANz

( ) of rational functions
1.5) we obtain the following

AB
ch

THEOREM 1.1 (The Hartogs-Rosenthal Theorem). Let K be a compact set in
C with ma(K) = 0. Then R(K) = C(K).

ProoF. Fix f € C'(C). Choose a sequence of open, smoothly bounded sets
{D,,} decreasing to K. Fix ¢ > 0. By (1.5), for each n there exists F,, € A(D,)

with of
2
”f - Fn“ﬁ < —=-max| =

VT D,

By Runge’s Theorem, there exists r, € R(K) such that ||F,, — ||k < €. It follows
2
1f = rallic < == - max

that
ﬁ \/ mz + 2€.

Since ma(D,,) = m2(K) = 0 as n — oo, we get I|f — rnllk < 3e for n sufficiently
large. As e was arbitrary, f |k € R(K). Restrictions of functions in C*(C) to K
are dense in C(K), so R(K) = C(K). O

ma(Dy) + €.

Our goal in this paper is to study the above situation when the complex plane
is replaced by the unit sphere S in C?, and analytic functions on a domain in C are
replaced by CR functions on a domain on S. Our work uses the kernel introduced
by G. Henkin in [6]. Related integral formulas are given by Chen and Shaw in [4].

In section 2 we describe Henkin’s kernel and the analogues of formulas (1.1) and
(1.2) on the sphere S. In section 3 we give a Cauchy-Green formula for a smoothly
bounded domain on §. The remainder of the paper is devoted to a study of the
integrals appearing in this formula and applications to approximation results.
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2. Henkin’s kernel for S

We denote by B the open unit ball in C2, and let S = 9B be the unit sphere.
Points in C? will normally be written as z = (2z1,22) or ( = ((1,(2), and the
Hermitian inner product as ((,z) = (1Z1 + (2Z2. The standard invariant three-
dimensional measure on S is written ¢ (note: ¢ is not normalized). We will also
frequently make use of the 2-form w({) = d(i A d{a. We denote by A(B) the ball
algebra consisting of all functions continuous on the closure of B and holomorphic
on B. If Q is an open subset of S, we say g € C1(Q) is a smooth CR function
on (), if Xg =0 on Q, where X is the tangential Cauchy-Riemann operator on S.
Expressed in the coordinates of C2,

0 0
X = 228—21 — 21 6—22
Any function holomorphic in a neighborhood of € in C? is a smooth CR function
on (). Using the fact that for smooth ¢

(2.1) OpAw = 2(X¢) do

as measures on S, we see using Stokes’ theorem that g is a smooth CR function on
Q if and only if

(2.2) /95(1)-9/\(4):0

for every ¢ € C>°(C?) whose support meets S in a compact subset of Q. We say
that g € C(Q) is a continuous CR function on Q, and write g € CR(Q), if (2.2)
holds for all such ¢. It follows easily from (2.2) that CR() is closed under uniform
convergence on compact subsets of 2. Since every g € A(B) is a uniform limit of
polynomials on S, it follows that g € CR(S) if g is in the ball algebra and that
g € A(B) is a smooth CR function on Q whenever g |q € C'(€2). For a compact
K C S, let CR(K) be the uniform closure in C(K) of functions that are CR in
some relatively open neighborhood of K in S.
As a replacement for the Cauchy kernel (¢ — z)~' Henkin gave the kernel

) = (172 — (7
1 —(2,Q)*’

On S x S, H is real-analytic off the diagonal {{ = 2z}, where (z, () = 1. We consider
as an analogue of the Cauchy transform fi of a measure u the transform

H((, =2 (,z€8S.

K,(Q) = /S H(C2) dulz), (€S,

for a measure pr on S. The integral defining K, converges absolutely a.e-do on S,
and K, € L'(S,0). Under the assumption that p is a measure on S orthogonal
to the restriction to S of every holomorphic polynomial on C?, Henkin proves

(2.3) /Sd)du:#/sgd)/\l(u-w, ¢ € C'(9).

The orthogonality assumption on p is necessary since the right-hand side of (2.3)
vanishes if ¢ is the restriction to S of a polynomial.
We record below some useful properties of H and K ,:
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(i) H(¢z2)=—H(z);

(ii) Tf U is a unitary transformation of C? with det(U) =1, H(U(,Uz) = H((, 2);
(iii) X[H((,2)] = —(1 — {(2,¢)) "2 (differentiation is in the ¢ variable);

(iv) K, € CR(S \ supp(u)).

Properties (i) - (iii) are routine computations, while (iv) follows immediately
from (2.3) and the definition (2.2) by taking by taking ¢ supported on an open set
disjoint from supp(u).

As an analogue of the Cauchy-Green formula (1.1), we have the following rep-
resentation on S: given ¢ € C*(S), there exists a function ® € A(B) such that

(2.4) #(2) = (=) + 1y /S B6(C) A H(C,2) w(C), 2 € S.

This formula, which we call the Cauchy-Green formula on S follows directly from
(2.3) as follows: set

_ '/q%(o AH(C,2) w(C).

Choose a measure p on S with p orthogonal to polynomials. Then

[ K@) dut: /[/Hc du()]%(()/\w = [ 360) 1 K,0) (0)
By (2.3),
'/5;(4772¢7K) dp = 0.

Since this holds for every p orthogonal to polynomials, the Hahn-Banach Theorem
implies that 472¢ — K belongs to the uniform closure of polynomials on S, and so
is the restriction to S of a function in A(B), giving (2.4). Other proofs of (2.4) are
given in [4] and [1].

3. The Cauchy-Green formula for a domain on S

Let QF be a smoothly bounded domain on S, and fix a function ¢ € C'(Q+).
We wish to generalize formula (2.4) to this situation. Let Q~ denote the complement
of Ot on S. Note that Q™ = —90™T as oriented manifolds.

THEOREM 3.1. For z € QF we have

0:) = A+ 13 [ BOO AR w0 - 7 [ OB (0,
where A € CR(QT).

PROOF. We form a smooth extension ¢ of ¢ to S. By (2.4) there exists
® € A(B) such that for z € S,

d(z2) = B(z /a¢ YAH(( 2) - w(C)

and so
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We rewrite the last term of this equation as follows: for 2 € Q7T fixed, the function
¢ — H((,z2) is smooth on 2, and so we may use Stokes’ theorem to write

MO w(Q) = [ dBOHC2) (o)

o0~

= [ BOAEC O+ [ 60T A

o-
Using (2.1) and property (iii) of the Henkin kernel the second integral on the
right-hand side of the last equation can be expressed as

S ot
2 o T o
Therefore,
(3.2) . PO NH((, 2) w(C) = . P(CQ)H(C, 2) (<)+2/7¢(<)(17<Z,C>)2

and so we may rewrite (3.1) as

(33) 9 = A+ 15 [ DO NHG (O~ o7 [ HOHC ()
for z € QF, where

R N PN (s
(3.4) Az) = @(2) + 27 /o (C)w-

As noted above, since ®(z) € A(B), ® € CR(S), while the second term on the
right-hand side of (3.4) is holomorphic in a neighborhood of Q% in C?, and hence
belongs to CR(Q"). This completes the proof. O

We refer to the formula appearing in Theorem 3.1 as the Cauchy-Green formula
for QF. Our goal in the remainder of this paper is to suggest how the formula of
Theorem 3.1 can be used to derive approximation results for certain compact sets
K C S, in much the same way that we employed the classical Cauchy-Green formula
to derive the approximation results in section 1. We first note a simple corollary of
Theorem 3.1; cf. the proof of the Hartogs-Rosenthal theorem in section 1.

COROLLARY 3.2. Let K be a compact subset of S, and suppose for each € > 0,
Q. is a smoothly bounded domain in S containing K, with lim._,qg+ 0(Q,) = 0. For

¢ € CL(S) set

F(z) = — OO w(0), zeq.

= 42
47[-'85

If for each € > 0 there is a function h. € CR(Q) so that lim,_,o+ [|[Fe — h|]|x =0,
then |k € CR(K).

PROOF. Apply the formula of Theorem 3.1 to the domain ). to obtain for
z € 0,

1

4r?

(35)  d(2) = A(z) — he(z) — (Fe(2) — he(2)) + /Q 9¢(Q) N H (G, 2) w(Q)
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where A — h. € CR(2.). By hypothesis, ||F. — h.||x tends to zero as e — 0%, while
the uniform integrability of H in z implies that the last term on the right of (3.5)
tends to zero uniformly in z as € — 07 (see the proof of Lemma 4.1 below), and so

lim | — (A + he)llk =0,
e—0t
implying ¢ € CR(K). O

As Corollary 3.2 shows, the study of approximation by CR functions on compact
subsets of S can be reduced to the study of CR approximation of integrals of the
form

Fo¢(2) = o P(QH (S, 2) w(()-

for smoothly bounded neighborhoods Q of K. The remainder of this paper is
devoted to an examination of such integrals. In section 4 we show that for certain
M and ¢, Fo 4 € CR(2). In this case the formula of Theorem 3.1 immediately
yields an estimate similar to (1.5). However, in general one cannot expect that F'
will be a CR function on 2. In sections 5 and 6 we establish approximation results
on certain compact subsets K of S with o(K) = 0 by approximating Fq_ 4 by CR
functions on a sequence of domains (), shrinking to K, and applying Corollary 3.2.

Because the Cauchy-Green formula for domains on S lends itself to the study
of approximation by CR functions, it is worthwhile to comment on the relationship
between the space C R(K) and the spaces A(K), R(K) (consisting of uniform limits
on K of functions holomorphic in neighborhood of K, and rational and holomorphic
in a neighborhood of K, respectively.) Since any function holomorphic in a neigh-
borhood U of K in C? is a CR function on U N S, it follows that A(K) C CR(K).
On the other hand, if v € CR(Q) for some open neighborhood of K in S, it is
well-known that there exists an open subset U of B containing 2 in its closure, and
a function 1/3 holomorphic in U and continuous on U with 1/~) = ¢y on ). There exists
t < 1so that tz € U for all z € K, and so the function z — )(tz) is holomorphic
in a neighborhood of K in C2. As ¢t — 1, the functions t(tz) approach ¢ uni-
formly on K. It follows that CR(K) C A(K), and hence CR(K) = A(K). By the
Stone-Weierstrass Theorem, A(K) = C(K) if and only if the conjugate coordinate
functions {Z1,Z2} belong to A(K); if (say) z2 # 0 on K C S, then the relation
Zy = (1 — 21Z1) /22 shows that A(K) = C(K) if and only if z; € A(K).

Recall that a compact subset K of C" is said to be rationally convez if given any
point z € C*\ K, there is a polynomial P with P(z) = 0 but P # 0 on K. Rational
convexity is a necessary, but far from sufficient, condition for R(K) = C(K) when
n > 1. Richard Basener [2] constructed rationally convex subsets K of S for which
R(K) # C(K). Basener’s sets have positive o-measure. We have been motivated
by the following analogue of the Hartogs-Rosenthal Theorem, for which we have no
proof or counterexample.

CONJECTURE 3.3. Let K be a rationally convexr subset of S with o(K) = 0.
Then R(K) = C(K).

If K is rationally convex, then it can be shown that A(K) = R(K), so that by
the above remarks, rational approximation on K is equivalent to CR approximation.
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4. A special case

LEMMA 4.1. Given a domain Qt C S, and ¢ € C*(QF), suppose that

Fe) = [ 8OH(G) (0

defines a CR function on Q. Then for any compact subset K of QF,
(4.1) dist(¢, CR(K))) = inf{ll¢ — ¥||x : ¥ € CR(K)} < Co+ - [|X(9) g

for a positive constant Cq+ independent of ¢ and K with the property that for every
€ > 0, there exists § > 0 so that o(QT) <6 = Cq+ < e.

ProOOF. By Theorem 3.1,
(42) 9= A + 15 [ DO NHG (O~ o7 [ HOHC ()

with A € CR(Q27). By hypothesis, the second integral on the right of (4.2) defines
a function in CR(S \ Q1) and so

o) = )+ gz [ DO AHC ()
= )+ g [ X@OHE)(0)

with 4; € CR(Q). Thus for any compact K C QF,
dist(¢, CR(K)) < 2—max|X |/ H((,2)| do(Q).
2

Set Co+ = sup,cq+(1/272) [o4 |H(C,2)| do(¢). By the unitary invariance of H
and do,

[ a0 = [ ae o < [ ) <o

where 20 = (1,0) and U, is a unitary transformation with det(U ) =1 taking z to
2%, Thus Cq+ is finite and (4.1) holds. Moreover, since H(-,2%) € L'(do), given
e > 0 there exists 4 > 0 so that whenever Y is a measurable subset of S with
o(Y) < 0, then [, |H(¢,2%)|do(¢) < e. The claim regarding Co+ then follows by
noting that for every z, o(Q") = o(U. Q7). O

REMARK 4.2. The corresponding estimate for @ = S (without hypothesis on
¢) is given in [1], Theorem 4.1.

Next we identify a special case in which the integral F' appearing in Lemma
4.1 can be shown to be a CR function on Q7.

LEMMA 4.3. Let QF be a smoothly bounded domain on S and let ¢ € C'(QF).
Suppose there exists a smooth 3-manifold-with-boundary ¥ in C? with 0% = 0T,
and a function ¢ smooth on ¥ and holomorphic in a neighborhood of ¥ \ 0%, with
= ¢ on ONF. Then

F(z) = B(QH (¢, 2) w(C)
Joo+
belongs to CR(S \ 9Q7).
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PrROOF. Let p be the measure ¢w |sq+. For any polynomial P, by Stokes’
theorem we have

/SPdu:/wa:/Ed(Péw):/ZE(PM:O

by assumption on ¢. Therefore, K, € CR(S \ 0Q*). But

9= [ HCH) dul¢) = F).
Js
By property (iv) of K, above (section 2), K,, € CR(S \ supp(u)) = CR(S \ 9QT),
so F e CR(S\o0T). O

EXAMPLE 4.4. As a first example of the situation considered in Lemma 4.2,
take

QOF ={¢eS:Im(G) >0}, L={zeB:Im(G:) =0} ¢C) = (.

Then ¢(¢) = (» extends ¢ from 0+ holomorphically to a neighborhood of ¥, and
lo)

F(z) = /8 L GH(G2) (0

ExAMPLE 4.5. For 0 < r < 1, let T, be the torus

{CesS:|Gl=r}.
The three-manifold ¥, = {¢ € B : |(;| = r} has boundary T;.. Since for ¢ € T,
T Y
C'l - Clz CQ - CQ

while (1,(s # 0 near ¥,, both ¢, and (, extend holomorphically from T, to a
neighborhood of ¥,. By Lemma 4.3, (taking say Qt = {( € S : |G1] > r}),
fTr ¢;H(¢, 2)w(¢) is a CR function on S\ T, j = 1,2. It follows that if 0 < a < b < 1
and

Q={CeS:a<|¢]|<b},
then

GHCH) (O = [ T / CHG ) w(0)
a9
defines a CR function on S \ (Ta U Tb), j=12.

EXAMPLE 4.6. Let v be a simple closed curve contained in the open unit disk
of the complex plane, and let D be the region bounded by ~. Put

Ot ={CeS:¢ eD)
We will show that for any ¢ € C(v), F(z) € CR(S\ 0Q7"), where
F(z) = $(G)H (¢, z)w(C)-

o0t
For ¢ € C(7) and ¢ € 80T, define ¢(C1, ) = ¢(¢1). If T is the three-manifold

Y={(G,G): G €G] <V1-]G}

then 9% = 9NT. If g € C(v) extends to be holomorphic in some neighborhood of
v, then § extends to be holomorphic in a neighborhood of X, and so by Lemma 4.3

W)= [ HOFC2) w0
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defines a CR function on S\9Q*. But the functions holomorphic in a neighborhood
of v, restricted to ~, are dense in C(v), and so given any ¢ € C(y) we may choose
a sequence {g,} of functions, each holomorphic in some neighborhood of 7, so that
Gn — ¢ uniformly on Q. Then F,, — F uniformly on compact subsets of S\9Q+
and so F € CR(S\ 9Q7).

Note that by Lemma 4.1, each of the three preceding examples yields an ap-
proximation result for compact subsets of the respective domains Q7.

5. Certain two-spheres in S
For any a,0 < a < 1, set A, = 4/1 — |a|? and let
Sa={(G.¢) €S:Im(G:) =a

. Note that S, is a two-sphere in the hyperplane {Im((s) = a} defined by |(i]* +
Re(¢2)? = A2, Fix ap,0 < ap < 1, and fix ¢ with 0 < ¢t < \,,. Henceforth
we assume without comment that the parameter a is sufficiently close to ag so
that also t < A\;. Then A, = {¢ € S, : |Re({2)| > t} is a nonempty subset of
Sa, consisting of two disjoint sets each diffeomorphic to a closed disk, that are
neighborhoods of (0, £\, +ia) in S,. Set M, = S, \ 2A,. Our goal in this section
is to use the formula of Theorem 3.1 to establish the following result, which can
also be obtained by using results on approximation on totally real manifolds (see
7], 18], or [9]).

THEOREM 5.1. If K is any compact subset of M, , A(K) = C(K).
ProOOF. To begin, we may parameterize M, by
(5.1) (1:\/Wew, G=z+ia, 0<60<2r, |z|<t.
Define
9= [ GHCDQ, zes\M,

We may use properties (i) and ( 111) of the Henkin kernel from section 1 to compute
X (G,), obtaining

(5.2) Fa(z);X(Ga)(z):/M ( Geld) g\,

L (1=(¢2)*

Note that F, is in fact defined for all z € BU S \ M,, since for such z, (z,{) # 1
for ( € M,, and Fj, is anti-holomorphic in B.

LEMMA 5.2.

! 9 9 dx
Fa(z):szlt(w _/\“)(17(.7:-4—73(1)22)2’ z €S\ M,.

ProOF. Using the parametrization (5.1) we have

w=iy/A2 — 22 e df A dx

and so

(53) R = | (02— a?) (/ " ﬁ) dr,
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where A =1 — (z 4+ ia)Zs and B = /A2 — 22 Zz;. If |2| < 1/2, then |B| < 1/2 and
|A| > 1/2, and thus A — Bt # 0 for |7] < 1. The inner integral in (5.3) can be
computed by the residue theorem:

/2” idf _/ dr 1 _ 2mi
o (A-Beif2 [ _, 1 (A-Br)2 A2’
Thus

t
dx

5.4 F,(2) = 2ri 2 _ 2

( ) (Z) ¥ /7]‘(33 a) (1 — (’I‘ + 7:(1)22)2

for |z| < 1/2. Since both F,(z) and the right-hand side of (5.4) are real-analytic in

B, the equality of (5.4) in fact holds for z € B. Moreover, since |z +ia|*> = 2° +a” <

t2 +a% < A2 + a? = 1, both sides of (5.4) are continuous on B\ M,. It follows that

the equality of (5.4) obtains for z € E\ M,. 0
Define
2mi [! (2 = \2)
Ia T . d ! S Mﬂ7 0
(2) 21 /4 (z +ia)(1 — (z + ia)Zy) z, z€ S5\ 2 #

Then I, is smooth on S\ M, (note |z +ia| > a > 0), and a calculation gives
X(I,) = Fo(z), z€ S\ M,
and therefore X (I,) = X(G,) on S\ M,. This yields:

LEMMA 5.3.
/cl (C.2)w(Q) = T + ¥y 2 €S\ M,

where ¢, € CR(S \ M,)
Now consider the domain ()., defined by
Q. ={Ce€S:a9—e<Im(i) <ag+e Re(()| <t}
where € is chosen small enough so that ¢ < A, for all a € [ag — €, a9 + €]. Note
00 = Myy—e UMy VY UYS,
with appropriate orientations, where
Yi, ={C€S:Re((r) = %t, ag — e < Im((2) < ap + €},

and so by Lemma 5.3,

GH(G2)w(Q) = he(2) + [Hagre(2) = Tag—e(2)]

0.
/cl (¢ ) / CLH (G 2)w(Q)

for z € Q, where he = ¥4y—c — Yag+e € CR(,). It is easy to check for z € M,
that I,(z) is a continuous function of a at ag, so that

el—i>10n+ I(lo+f(z) - IGO*F(Z) = 07 z € Mflo:

+
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and in fact the limit is uniform on M,,. Moreover, restricting z to a compact
subset K of M,,, the function ¢ ~ (,H((,2) is bounded on YZ,. Since the two-
dimensional Hausdorff measure of Y; approaches zero as ¢ — 0, and since w is
absolutely continuous with respect to Hausdorff measure, we see that

e—0t

tim [ H(C (0 =0
Vi
uniformly for z € K. Combining these observations, we have

lim Z]H(C= 2)w(C) — he(2) =0

e—0t 9,

uniformly on compact subsets of M,,. By Corollary 3.2, since h, € CR(Q,), ¢({) =
{, € CR(K). Since (> # 0 on K, we conclude that (see the remarks at the end of
section 3) A(K) = C(K), and the proof of Theorem 5.1 is complete. O

6. Certain graphs in S

In this section we establish approximation on certain graphs in S, using the
general method of section 5. Let D be a smoothly bounded plane domain with
compact closure in the open disk I, and suppose f € C!(D) satisfies |f({)| =

/1 —=1(|?, so that the graph T'y = {(¢, f(¢)) : ( € D} lies in S. As in section 5, we
will study the integral

(Q)H (¢, z)w(C)

J Q.

on a sequence of domains Q. for which Q. | I'y as e | 0. We begin with a represen-
tation for an integral of this type over I'y.

LEMMA 6.1. With f,D,T as above, and ¢ € C'(Ty), set

G(z) = [ o(QH(( 2)w(C)

JT ¢

for z € S\ T'y. Then (differentiation is in the z variable)

_ . - d¢ ¢ dC, Adg
2XG(e) = aD #er) 1 -Gz — f(G)Z2 * p 0, 1-Gz1 — f(G)z2

where ¢(C) = ¢(Cr, F(G))-

PROOF. Use properties (i) and (iii) of the Henkin kernel to write

2 XG(z) = 52' - B(Q)(1 = (¢, 2)) *w(()

_ = - d¢i A (D /8¢,)d¢,
- ./D #e) (1 -Gz = f(G)Z2)?

. 9 1 _
- /ﬁ(@i (1 — f(C1)52> de A dC,
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Rewrite the latter integral and use Stokes’ Theorem to obtain

7 XG(2) ,/ d( (C1)dCy >+ 09 d, AdG
JD

1-0z1 — f(G)Z2 Jpd¢, 1-G7Z1 — f(G)Z

_ / o) 96 dG AdG

op 1 — GZ1 — f(G1)Z2 p 8¢, 1—Gz - f(G)z

O
We now restrict our attention to graphs of the following form. Fix rg,r; with
0<rp<rs <1andlet D be the annulus {A € C:ry < |A| <7}. For A € D set
- A
(6.1) f) = V1I-]AP B(W)

where B is a (fixed) finite Blaschke product:
7
B(\) = !
( ) j:l_[l 1—a;A

with |a;| < 1,5 =1,...,n. Denote by I'y the graph {(A, f(X)) : A € D}; note that
since |[B(7)| =1 when |7| =1,y C S.

THEOREM 6.2. Assume f has the form (6.1). Then for any compact subset K
of Ty, A(K) = C(K).

ProOF. For t € R set f;(A) = f(A)e'. We consider first the integral

G = E1H(C2)W(C)

- Fft

LEMMA 6.3. Forz € S\Ty,,

r2 r? m rdr
7 XGy(z) = 2mi o — ] 2 / 10,2,
2 t(z) T <1 — bt (TO)EQ 1-— bt (7“1 )22 * 0 1- bt (T)EQ

be(r) = V1 —7r2-e"B(0).

PrOOF. According to Lemma 6.1,
_ = dG / d¢, A dG
6.2 Zo XGy(z) = f/ — — + = - —_—-
(6.2 2XGile) .aDC11—C1z1—ft(C1)z2 p 1—=G7Z — fi(G1)Z2
Write the first integral on the right-hand side of (6.2) as I, (2) — I, (z), where

where

I (2) '/277 o
r(% = 1 - - -
Jo 1—reiz; —/1—r2B(ei)ei’z,

_ / r? dr
 Jpe (1 =1z = V1 = P2 B(1)eitz,)

It is easy to check that (1 — 77z, — v/1 — r2B(7)Z2) ! is holomorphic for |7| < 1
and continuous for |7| < 1 for fixed z € S\ I'y,. Cauchy’s integral formula then
gives

2mwir? 2mir?

(63) ]r(z) = 1_ mB(O)E‘H’EQ - 1— bt(T)EQ.
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The second integral on the right-hand side of (6.2) can be evaluated as follows:
write (; = rem, then

/ dc, A d¢y . / < /2” idf ) .
= rdr
p1—GZ1 — fi(C1)Z2 ro \Jo 1—re?Z —/1—r2B(ef)eitz,

1 dr
= 2 - rdr.
/ro (/71 T(1=—r721 —V1-— TQB(T)e’t22>

It is easy to check that the function (1 —r7z; — V1 — r2B(7)e%y) is nonvanishing
for |7] <1, if z € B and so the Cauchy integral formula gives

/ d¢, Ad¢ 5 /T‘ 2mi dr— 4 i/h rdr

= = 7r ., < .
p1-Gz1— fi(G)Z ro 1= V1 —72B(0)eitZ, o 1= bi(r)z
Again by continuity this result holds also for z € S\T'y,. Combining (6.2), (6.3)and
the last displayed equation gives the formula of Lemma 6.3. O

We next proceed to construct a certain function M; such that X M; = XG; on
S\ T;. By Lemma 6.3,

1 1 re 1 r? 1 r dr
—XGi(z) = — g - = ! +2 / _—
27” f( ) EQ 1-— bt(’l“g)fg 22 1-— bt(T'] )22 ro 32(1 — bt (T)ZQ)

1 b (1) 1 b (r1)
_ 2t t\"o A T U
- TO <EQ + 1-— bt(T0)§2> g <EQ + 1-— bt(T'] )22
m 1 bt(T')
—9 - 4tV J .
/To (EQ + 1-— bf(?“)fg) rdr

and so
1 &by (ro) riby(r1) " by(r)
[ G f— 0 . - ] - 2/ /7 d N
o ) = 1 b(ro)z: 1= bi(r)% w T hmE
Note that (r)
1 bf r
X |—log(l — by(r)z3)| = ————
L] o( t(’")“)} 1—by(r)z2’

and so if we set
2mi [ . . m
M;(z) = zi7 (rﬁ log(1 — bi(ro)z2) — rf log(1 — bs(r1)z2) + 2 / log(1 — b:(r)z2) rdr)
1 Jrg
we have
(6.4) XM, = XG,

on S \ Fft'

Given a compact subset K of I'¢, for fixed € > 0 we define a neighborhood .
of K in S by

Qe ={(¢1,G): G €D, &= f(G)e",|t] <€}
Note that {Q.}.so forms a decreasing family of domains with intersection I'y, and
that
o0, = Ff( @] Ffff U B,

where

B, = {(\, f(\)e) : X € dD, |t] < €}.



14 JOHN T. ANDERSON AND JOHN WERMER

Set
Fe(z) = ZlH(Cz)w(C)

a9,
Then for z € Q,,

R = [ GHIC0 - /Fc H, /41 (¢ 2)w(0)
= G -G+ [ TH (G 210
= M.(2) - M.(2) + [ GHC (),
where h, = G. — M, — (G_. — M_.) € CR(Q ;lw (6.4), and so

(6.5) Fo(2) — ho(z) = M.(2) - / CLH (G, 2)w(0).

Since the two-dimensional measure of B, tends to zero with epsilon it follows that
(cf. the end of section 5)

Jim /B H(G () =

e—0t

uniformly on K. Moreover, an examination of the definition of M; shows that
lim,_,o+ M, — M_, = 0 uniformly on K. It follows by (6.5) that

lim ||F, — hellx = 0.
e—0*t

By Corollary 3.2, ¢(¢) = {; € CR(K). Since (» # 0 on K, we conclude that (see
the remarks at the end of section 3) A(K) = C(K), and the proof of Theorem 6.2
is complete. [l
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